

Calorimeters - Part I -

Erika Garutti

Universität Hamburg DER FORSCHUNG I DER LEHRE I DER BILDUNG

Outline

- Lecture I Basics of calorimetry for HEP
 - Signal generation
 - Electromagnetic and hadronic processes
 - Sampling vs homogeneous calorimeters
 - 4D shower development
 - Signal detection
 - Response linearity and energy resolution
- Lecture 2 Modern calorimeter systems (Martin Aleksa)
- Lecture 3 Particle flow calorimeters (Katja Krüger)

Key questions:

What is a calorimeter used for (in HEP)?

Measure particle energy

• Of which particles is possible to measure the energy ?

Stable charged and neutral particles with sufficiently long lifetime of $c\tau > 500 \mu m$: e[±], μ^{\pm} , π^{\pm} , K^{\pm} , p^{\pm} , K^{0} , n, γ

• How is the energy of a particle measured?

Total absorption (destructive process) / conversion into measurable signal

(NB. issue of muons)

What is the basic assumption in this method?

S = aE

why calorimeters?

Measure charged + neutral particles

 Obtain information *fast* (<100ns feasible) recognise and select interesting events in real time (*trigger*)

Signal generation

- I. A particle deposits its full energy in the calorimeter media
- 2. The energy is converted into a measurable signal

Signal generation

I. A particle deposits its full energy in the calorimeter media

Interaction of particles & matter:

Process are particle & energy dependent

It depends on the kind of material the calorimeter is made of

Analytical description exists for electromagnetic (EM) processes but not for hadronic (HAD) processes

Electromagnetic Showers

Dominant processes at high energies (E > few MeV) : Photons : Pair production

$$\begin{split} \sigma_{\text{pair}} &\approx \frac{7}{9} \left(4 \,\alpha r_e^2 Z^2 \ln \frac{183}{Z^{\frac{1}{3}}} \right) \\ &= \frac{7}{9} \frac{A}{N_A X_0} \quad \text{[X_0: radiation length]}_{\text{[in cm or g/cm2]}} \end{split}$$

Absorption coefficient:

$$\mu = n\sigma = \rho \, \frac{N_A}{A} \cdot \sigma_{\text{pair}} = \frac{7}{9} \frac{\rho}{X_0}$$

$$X_0 = \text{radiation length in [g/cm2]}$$
$$X_0 = \frac{A}{4\alpha N_A Z^2 r_e^2 \ln \frac{183}{Z^{1/3}}}$$

Electrons : Bremsstrahlung

$$\frac{dE}{dx} = 4\alpha N_A \ \frac{Z^2}{A} r_e^2 \cdot E \ \ln\frac{183}{Z^{\frac{1}{3}}} = \frac{E}{X_0}$$

$$\bigstar E = E_0 e^{-x/X_0}$$

After passage of one X₀ electron has only (1/e)th of its primary energy ...

Electromagnetic Showers

An alternating sequence of interactions leads to a cascade

Simplified shower model [Heitler] $E > E_c$: shower development governed by X₀ e^- loses energy via Bremsstrahlung γ pair production with mean free path 9/7 X₀

Number of particles doubles every X_0 of material, till the particles energy reaches E_c

Cloud chamber photo of electromagnetic cascade between spaced lead plates.

 $E < E_c$: energy loss only via ionization/excitation and photo- absorption

EM Shower Properties

Shower continues until energy of particles below critical energy

$$t_{max} = \frac{\ln \frac{E_0}{E_c}}{\ln 2} \qquad \qquad N_{max} \simeq \frac{E_0}{E_c}$$

Key feature in calorimetry: Shower increases longitudinally with the logarithm of the incident particle energy

Calorimeters can be compact

Some numbers: $E_c \approx 10 \text{ MeV}$, $E_0 = 1 \text{ GeV} \rightarrow t_{max} = \ln 100 \approx 4.5$; $N_{max} = 100$ $t_{95\%} \sim 10 X_0$ $E_0 = 100 \text{ GeV} \rightarrow t_{max} = \ln 10000 \approx 9.2$; $N_{max} = 10000 t_{95\%} \sim 20 X_0$

	Szint.	LAr	Fe	Pb	W
X ₀ (cm)	34	14	1.76	0.56	0.35

→ 100 GeV electron contained in 16 cm Fe or 5 cm Pb Erika Garutti - EDIT school - DESY 2020

9 /34

EM shower - a more complex reality

- Shower maximum depends slightly on material
- After maximum the shower decays via ionization and Compton scattering
- The process is slower for high-Z materials NOT proportional to X_0

EM Shower Properties

- Longitudinal development governed by the radiation length X₀
- Lateral spread due to electron undergoing multiple Coulomb scattering [Molière theory]: 95% of the shower cone is located in a cylinder with radius 2 R_M

$$\begin{split} R_{M} = & \frac{E_{s}}{E_{c}} X_{0} \approx \frac{21 MeV}{E_{c}} X_{0} \\ & E_{s} = \sqrt{\frac{4\pi}{\alpha}} (m_{e}c^{2}) = 21.2 \; \mathrm{MeV} \\ & \mathrm{[Scale \; Energy]} \end{split}$$

- Lateral width scales with the Molière radius
 R_M
- Important parameter for shower separation

Ċ

Z + 1.2

-() 7

 E_{c}

Erika Garutti - EDIT school - DESY 2020

- M

- PD

Example

electron with $E_0 = 100 \text{ GeV}$ in lead glass $E_c = 11.8 \text{ MeV}$ $X_0 \approx 2 \text{ cm}$

$$t_{max} = \frac{\ln \frac{E_0}{E_c}}{\ln 2}$$

$$t_{95\%} = t_{max} + 0.008Z + 9.6[X_0]$$

$$N_{max} = 2^{t_{max}} = \frac{E_0}{E_c}$$

 $\sim 13 X_0 = 26 \text{ cm}$ $\sim 23 X_0 = 46 \text{ cm}$ ~ 8000

$$R_{M} = \frac{E_{s}}{E_{c}} X_{0} \approx \frac{21 MeV}{E_{c}} X_{0}$$
 ~ 3.6 cm
 $R(95\%) = 2 R_{M}$ ~ 7.2 cm

- -M

3D development of EM showers

Signal generation

- I. A particle deposits its full energy in the calorimeter media
- 2. The energy is converted into a measurable signal (charge / light / sound / heat)

- The most used materials:
 - gases / semiconductors / scintillators
- ... but also:
 - Cherenkov radiators / water ice / antennas / metals or liquids ...

Principle of energy conversion

generated charges or photons yield the measurable signal: statistical process = the more the better !

Historically

- semiconductors & gas mainly used in tracker detectors
 → p measurement (+ dE/dx)
- scintillators (organic/inorganic) mainly used in calorimeters
 E measurement
- ... but exceptions exist

Silicon - ECAL

Gas readout for HCAL

as detector developer be open minded and daring !

Fiber tracker

6x6 pads (10x10 mm²)

Pic: Cornel

Most commonly used: Homogeneous and Sampling Calorimeter

Homogeneous Calorimeter

- The absorber material is active; all deposited energy is converted into signal
- Pro: very good energy resolution
- Contra: segmentation difficult, selection of material is limited, expensive

Most commonly used: Homogeneous and Sampling Calorimeter

 $T_r =$

Homogeneous Calorimeter

Pro: very good energy resolution - why ?

- Detectable signal is proportional to the total track length of e+ and e- in the active material
- Intrinsic limit on $\sigma(E)/E$ due to fluctuations in the fraction (f_s) of initial energy that generates detectable signal, or the detectable portion of track

$$\frac{\sigma(E)}{E} \propto \frac{\sigma(T_r)}{T_r} \propto \frac{1}{\sqrt{T_r}}$$

$$f_s T_0$$
 $T_0 = N_{tot} X_0 \approx \frac{E_0}{E_0}$

E_c = critical energy (ionization = Bremsstrahlung)

- minimize Z/A
- maximize fs

$$f_s = \frac{E_0 - N_{\max}E_{th}}{E_0}$$

• Homogeneous calorimeter all e+e- over threshold produce signal i.e. scintillating crystals $E_s \sim eV$, $10^2 - 10^4 \gamma/MeV \rightarrow \sigma(E)/E \sim 1-3\% / \sqrt{E}$

Sampling Calorimeter

- A structure of passive and active material; a fraction (Sampling Fraction, fs) of the deposited energy is detected (1-5%)
- Pro: Segmentation, compact detectors by the usage of dense materials (W, U)
- Contra: Energy resolution is limited by fluctuations

Sampling Calorimeter

A structure of passive and active material; a fraction (Sampling Fraction, fs) of the deposited energy is detected (1-5%)

$$T_r = f_s T_0 = f_s N_{tot} X_0^{abs} \approx f_s \frac{E}{E_c^{abs}} X_0^{abs}$$

Resolution scales with absorber thickness $t_{abs}=d/X_0$

$$\frac{\sigma(E)}{E} \propto \frac{1}{\sqrt{N_r}} \propto \frac{1}{\sqrt{f_s}} \sqrt{\frac{E_C t_{abs}}{E}}$$

 $\sigma(E)/E \sim 10-20\% / \sqrt{E}$

 \rightarrow Each system optimised to the energy range & physics of interest for the experiment

Energy resolution

The **energy resolution** is parametrized as:

$$\frac{\sigma(E)}{E} = \sqrt{\left(\frac{a}{\sqrt{E}}\right)^2 + \left(\frac{b}{E}\right)^2 + c^2}$$
$$\sigma(E) \qquad a \qquad b$$

or

• $E \propto N \rightarrow \sigma \propto 1/\sqrt{N}$: all statistical effects contribute

i.e. intrinsic and sampling fluctuations, photoelectron statistics

Noise term **b** (energy independent term)

 $\overline{E} = \overline{\sqrt{E}} \oplus \overline{E} \oplus c$

- Electronic noise, radioactivity
- Constant term **c** (linearly dependent of energy)
 - inhomogeneities, calibration uncertainties, radiation damage, (leakage), ...

relevant at low E

dominates at high E

Examples of electromagnetic calorimeters

n=1.65.

 $\eta = 3.0$

Endcap ECAL (EE)

Preshower (SE)

Erika Garutti - EDIT school - DESY 2020

Barrel ECAL (EB)

ATLAS EM barrel calorimeter

- Honeycomb spacers position the electrodes between the lead absorber plates
- Liquid Argon at 90°K flows through.
- Radiation resistant, no cracks in η
- Accordion structure with Pb-LAr sampling

CMS EM barrel calorimeter

- PbWO4 crystals (230x22x22 mm³)
- Read out by APD (Avalanche PhotoDiodes)
- Homogeneous

Examples of hadronic calorimeters

CMS: Brass/scintillator longitudinal orientation ATLAS: Fe/scintillator vertical orientiation

Resolution comparison

Reported energy resolutions for single particles from test beam measurements:

electrons

pions

Material upstream the calorimeter degrades E resolution performance: loss of energy in tracker / support structure / cables /cooling / readout electronics

Why are hadronic calorimeters worse than EM ones? Signal generation

I. A particle deposits its full energy in the calorimeter media

Interaction of particles & matter:

Process are particle & energy dependent

It depends on the kind of material the calorimeter is made of

Analytical description exists for electromagnetic (EM) processes but not for hadronic (HAD) processes

Hadronic shower

Extra complication: **The strong interaction** with detector material.

Produced in nuclear collisions:

high energetic secondary hadrons [O(GeV)]

electromagnetically decaying particles (π_0, η) initiate EM showers spallation p/n and nuclear excitation from soft nuclear processes [O(MeV)]part of the energy is invisible: binding energy of nuclei, v, μ , soft γ 's

Differen	t scale: hadror	nic interaction	length $\lambda_l = \frac{A}{N_A \sigma_{total}}$	σ_{tot} = total cross section for nuclear processes
	λι	X 0	em-comp	onat
Polystyren	81.7 cm	43.8 cm	ht	To production is a one way street:
РbWO	20.2 cm	0.9 cm	TO 3	all energy goes into EM
e	16.7 cm	1.8 cm	En The	
V	9.9 cm	0.35 cm	π^*	- 1 -
mpare X ₀ for high-Z materials, we see that the			L Z Z) -> late components

had component

Co large compared to EM calorimeters.

The structure of hadronic showers

hadronic showers have a complex structure also in time

hadron energy deposited via EM processes instantaneous, detected via energy loss of electrons and positrons in active medium

instantaneous component: charged hadrons detected via energy loss of charged hadrons in active medium

delayed component:

- neutrons from evaporation and spallation
- photons, neutrons, protons from nuclear deexcitation following neutron capture
- momentum transfer to protons in hydrogenous active medium from slow neutrons
- Importance of delayed component strongly depends on target nucleus
- Sensitivity to time structure depends on the choice of active medium

4D development of HAD showers

Hadronic calorimeter

The concept of compensation

A hadron calorimeter shows in general different response to hadronic and electromagnetic shower components

$$R_h = eE_e + hE_h$$

The fraction of the energy deposited hadronically depends on the energy

Hadronic calorimeter

The concept of compensation

A hadron calorimeter shows in general different response to hadronic and electromagnetic shower components

$$R_h = eE_e + hE_h$$

The fraction of the energy deposited hadronically depends on the energy

Erika Garutti - EDIT school - DESY 2020

Improved Energy Resolution: Compensation

- The detector parameter e/h is defined by geometry and material
- Typically to reach compensation (e/h = 1), the hadron signal has to be increased, by:
 - enhance sensitivity to slow neutrons, i.e. H-enriched scintillator, more $n + p \rightarrow n + p$
 - increasing of the neutron activity by use of a special absorber i.e. Uranium
 - choosing the right sampling-fraction ...

Compensating calorimeters - The ZEUS example

Highly-segmented, uranium scintillator sandwich calorimeter r/o by 12,000 photomultiplier tubes:

- compensation
- high Z material = compact size
- natural radioactivity provides means of calibration

proper choice of active and passive thicknesses gives compensation (e/h = 1.0)

Compensating calorimeters - The ZEUS example

Highly-segmented, uranium scintillator sandwich calorimeter r/o by 12,000 photomultiplier tubes

Summary

Calorimeters serve to measure the energy of charged and neutral particles

Electromagnetic Calorimeters

to measure electrons and photons through their EM interactions.

Hadron Calorimeters

to measure hadrons through their strong and EM interactions.

Two types of calorimeters classified into:

Homogeneous Calorimeters

only one material for two tasks, energy degradation and signal generation.

Sampling Calorimeters

alternating layers of absorber material to degrade the energy of the incident particle, and active material that provides the detectable signal.

Energy resolution

dominated by fluctuations