A brief lecture on DAQ & Trigger

EDIT-2020 School DESY, February 2020

Hans-Christian Schultz-Coulon Kirchhoff-Institut für Physik Heidelberg University

Prologue "Introducing the Subject"

Detecting & Recording Particle Reactions

Detecting & Recording Particle Reactions

Detecting & Recording Particle Reactions

Gargamelle – Selecting Events

[https://videos.cern.ch/record/1069969]

Gargamelle – Selecting Events

[https://videos.cern.ch/record/1069969]

What is the Problem?

Cannot (and do not want to) register all events

"Known physics" occurs more often than new physics

New physics buried under tons of known stuff

Trigger & DAQ in a Nutshell

DAQ responsible for collecting data from detector systems, digital conversion and recording to mass storage.

Trigger responsible for real-time selection of the subset of data to be recorded.

The combined system of Trigger/DAQ is often referred to as TDAQ.

Often interwoven ...

Detector

Detecting Coincidences

ATLAS Multijet Signature

Part 1

"The TDAQ Challenges of Today"

LHC Cross Sections and Event Rates

Events & Data rate @ the Large Hadron Collider

Overview on Operating Conditions

LHC Run-2 Performance

LHC Run-2 Performance

LHC Run-2 Performance

ATLAS Event with 25 pileup vertices

 $H \rightarrow ZZ \rightarrow ee \mu\mu$ candidate event

LHC Run-2 Performance – Pileup

Pileup dependence: $R_w \sim R_{w/o} [\mathcal{L} + b\mathcal{L}^2 + ...]$

Pileup dependence: $R_w \sim R_{w/o} [\mathcal{L} + b\mathcal{L}^2 + ...]$

Signal Synchronization

Data within same bunch crossing to be processed together

But:

Particle TOF $\gg 25$ ns [c ≈ 0.3 m/ns; 1 m ≈ 3 ns] Cable delays $\gg 25$ ns [cable lengths: 30 -70 m] [V_{signal} ≈ 0.66 c; 1 m ≈ 5 ns]

Requires signal synchronization with programmable delays With ns-precision!

Signal Synchronization

Timing precision guarantee correct energy determination ...

[e.g. ATLAS L1Calo Trigger]

Part 2

"Concepts, Dead Time & Buffering"

Typical DAQ Example – ATLAS @ Run-2

Simple Trigger & DAQ System

Simple Trigger & DAQ system

Detection Signal digitization Signal processing & storage

Started by fast trigger signal [e.g. Discriminator]

Simple Trigger & DAQ System

Simple Trigger & DAQ system

Detection Signal digitization Signal processing & storage

Started by fast trigger signal [e.g. Discriminator]

Busy-Logic:

Avoids triggers while processing

Defines

DAQ Efficiency & Dead Time

Input event rate : $\lambda = \tau_{inp}^{-1}$ DAQ output rate : ν Processing time : τ DAQ busy : $\nu\tau$ DAQ free : $1 - \nu\tau$

Hence:

$$\nu = \lambda \cdot (1 - \nu\tau) \twoheadrightarrow \nu = \lambda (1 + \lambda\tau)^{-1}$$
$$[\nu < \lambda]$$

Efficiency :
$$\epsilon = \nu/\lambda = (1 + \lambda\tau)^{-1}$$

Rel. dead time : $DT = 1 - \epsilon$
 $= \lambda\tau (1 + \lambda\tau)^{-1}$

DAQ Efficiency & Dead Time

DAQ Efficiency & Dead Time

Adding an Extra Trigger Levels

Input event rate : $\lambda = \tau_{inp}^{-1}$ L1/L2 rates : ν', ν Processing times : τ_1 , τ_2 , $\tau = \tau_1 + \tau_2$ $\epsilon = \nu/\lambda = (1 + \lambda \tau)^{-1}$ $\epsilon' = \nu' / \lambda = ?$ K DAQ free : $1 - \nu \tau - K \nu \tau_1$ L2 Rejection Seen rate : $\nu' = \nu + K\nu$ Factor $\nu' = \lambda \left(1 - \nu \tau - K \nu \tau_1 \right)$ [...] $\epsilon' = (1 + \lambda\tau)^{-1} \left(\frac{K+1}{1 + K(1 + \lambda\tau_1)/(1 + \lambda\tau)} \right)$ ϵ Gain (G) Х
Adding an Extra Trigger Levels

Adding an Extra Trigger Levels

De-Randomizing Using Pipelines

Probability of *n* filled buffers: P_n Steady state: $dP_n = 0$

$$dP_n = [\lambda P_{n-1} + \nu P_{n+1} - (\lambda + \nu)P_n]dt$$

$$dP_0 = [\nu P_1 - \lambda P_0]dt, \ dP_N = [\lambda P_{N-1} - \nu P_N]dt$$

$$P_n = (\lambda/\nu)^n P_0 = (\rho)^n P_0 \quad \text{ [with } \rho = \lambda/\nu = \lambda\tau\text]$$

Using $\Sigma P_n = 1$ yields:

$$\mathsf{DT} = P_N = \begin{bmatrix} P_n = \frac{(1-\rho)\rho^N}{1-\rho^{N+1}} & \text{for } \rho \neq 1 \\ P_n = \frac{1}{N+1} & \text{for } \rho = 1 \\ \rho = \lambda \tau \end{bmatrix}$$

De-Randomizing Using Pipelines

Typical DAQ Example – ATLAS @ Run-2

Some Rates, Latencies & Dead Times

LVL1 dead time: DT = r/o Rate × busy after L1A

e.g. H1: 50 Hz × 2 ms (L1) ATLAS: 100 kHz × 125 ns (L1)

[†] Trigger-less readout in gab between bunch trains

Typical DAQ Example – ATLAS @ Run-2

Part 3 "Realizing Trigger Systems"

Fast & Parallel Processing

Different technologies to do in-situ signal analysis [Choice depends on requirements]

Calorimeter Trigger – ASP Detector

[Anomalous Single Photon Search]

Calorimeter Trigger – ASP Detector

Tracking Triggers

Finding tracks from segments ...

Wire groups 1-4

Epilogue

"Synchronization Challenge by Example"
Trigger Real-Time Path [Level-1]

Example: ATLAS L1 Calorimeter Trigger The L1Calo Pre-Processor System

Example: ATLAS L1 Calorimeter Trigger The L1Calo Pre-Processor System

Example: ATLAS L1 Calorimeter Trigger The L1Calo Pre-Processor System

Example: ATLAS L1 Calorimeter Trigger First Synchronisation in 2010

Splash Events Illuminating the Detector

3

Example: ATLAS L1 Calorimeter Trigger First Synchronisation in 2010

Timing Asymmetry due to Time-of-Flight ...

Example: ATLAS L1 Calorimeter Trigger First Synchronisation in 2010

Relative Trigger Timing at ± 10 ns @ Startup !

Example: ATLAS L1 Calorimeter Trigger Timing & Energy Calibration after Synchronisation

Thanks

