Photon Detectors

W. Ootani ICEPP, The University of Tokyo

EDIT2020, Feb. 27th, 2020, DESY

- Introduction
- Basic Properties of Photo-detector
- Vacuum photodetector
- Solid-state photodetector
- Comparison
- Summary

Introduction

- Basic Properties of Photo-detector
- Vacuum photodetector
- Solid-state photodetector
- Comparison
- Summary

Hamamatsu Photonics, PMT handbook

= person performing religious ritual with fire, symbolising something precious and glorious

Why Does Photo-Detection Matter?

Photons to be detected

- Photons emitted from object under study
- Photons generated in detector medium by particle interaction

How Does Photo-Detector Work?

Basic concept

• Covert light (photon) to electric signal

Detection process

- Photo-conversion (photoelectric effect)
- Photoelectron collection
- Electron multiplication

Building blocks

- Light window
- Photocathode material
- Electron multiplier

Brief History of Photo-detector

1873 Discovery of photoconductivity in Selenium (Se) by W. Smith

1905 A. Einstein paper to explain photoelectric effect as quantum effect

- **1913** First photoelectric tube by Elster and Geiter
- **1919** Invention of photomultiplier by J. Slepian
- **1950s First semiconductor photodiode (Ge)**
- **1967** Invention of APD
- **1970 First CCD device**
- **1990s Development of SiPM**

Categories of Photo-detector

Vacuum photo-detector

- Discrete dynode: PMT, MaPMT,...
- Continuous dynode: MCP-PMT
- Silicon-based electron multiplier: HPD, HAPD

Solid-state photodetector

- Photodiode/PIN photodiode
- APD
- SiPM
- CMOS
- CCD

Gaseous photo-detector ←not covered today

- Photo-ionisation (TMAE, TEA, ...)
- Electron multiplier (GEM, MWPC,...)

Photoelectric Effect

Two types of photoelectric effect

- External photoelectric effect
 - Photoelectric effect with emission to vacuum
 - Electrons are excited to conduction band and diffuse to photocathode surface loosing some energy
 - →If electrons still have energy above vacuum level, they can be emitted to vacuum
 - →Collected to electron multiplier
 - Vacuum photo-detector, gaseous photo-detector

Internal photoelectric effect

- Photoelectric effect without emission to vacuum
- Electrons are excited to conduction band
 - →Generate photocurrent
 - →Electron multiplication in the same material
- Solid-sate photo-detector

©Hamamatsu Photonics K.K.

Photo-sensitive Materials

• A wide range of wavelength to cover!

- Different types of photo-sensitive materials to be utilised
- QE<50% for photocathode for vacuum photodetector
- QE<80% for silicon

- Introduction
- Basic Properties of Photo-detector
- Vacuum photodetector
- Solid-state photodetector
- Comparison
- Summary

Crucial Properties

Crucial properties for photo-detector

- Sensitivity incl. spectral response
- S/N (gain + noise)
- Linearity
- Signal fluctuation
- Timing performance
- Area (large or compact, depending on purpose)
- Immunity to magnetic field
- Radiation hardness
- Ageing
- ...

Sensitivity

Different ways of measuring sensitivity

Pulse operation

- Quantum Efficiency (QE) = Efficiency for photoelectric conversion [%]
- Photon Detection Efficiency (PDE) [%]

Continuous (current) operation

- Radiant sensitivity (Responsivity)
 - = output current / input power [A/W]

Signal Fluctuation

Source of signal fluctuation

- Photoelectron statistics (Poisson distribution)
- Additional statistical fluctuation in multiplication process

Signal fluctuation characterised by Excess Noise Factor (ENF)

• Large ENF worsens energy resolution

$$ENF = \frac{\sigma_{OUT}^2}{\sigma_{IN}^2} = 1 + \frac{\sigma_M^2}{M^2}$$

M: multiplication gain

$\frac{\sigma}{E} = \sqrt{\frac{ENF}{N_{\rm pe}}}$

$$N_{\rm pe}$$
 : # of photoelectrons

ENF			
PMT	1.3		
MCP-PMT	~1		
HPD	~1		
APD	2 (Gain=50)		
SiPM	1.3		

ENE for photo-dotoctors

Timing Performance

- Fast response of photodetector crucial for some applications
- What determines time response of photodetector?
 - Signal shape

- Linearity is crucial especially for energy measurement
- For ideal photon detector, signal output \propto input #photon

Immunity to Magnetic Field

- Some particle detectors operated in magnetic field
 - Tracking detector and other detectors in magnetic field at collider detectors
- Immunity to magnetic field is required
- Otherwise light is transmitted via long optical fibre to photodetector placed outside without B-field

Area

Different requirements for sensor area

- Solid-state photodetector \rightarrow Compact \rightarrow High granularity
- Vacuum-based and gaseous photodetectors →Large are coverage

PMT (20"φ)

- Introduction
- Basic Properties of Photo-detector
- Vacuum photodetector
- Solid-state photodetector
- Comparison
- Summary

Vacuum Photo-detector

- PhotoMultiplier Tube (PMT) and its variants
- Old device, but still used in many projects
- Concept
 - External photoemission at photocathode in vacuum tube
 - Electron multiplier
 - Signal extraction at anode

Advantages

- High gain
- Wide spectral range to cover
- Large area
- Low dark current
- Excellent timing performance
- Radiation hardness
- Linearity, stability

Disadvantages

- Moderate QE
- Non uniformity
- Bulky
- Expensive

Signal Generation

 δ : Secondary emission rate at dynode

Light Window

Transmission in light window is crucial for shorter wavelength

• Need (expensive) UV-transmitting window for UV light

©Hamamatsu Photonics K.K. (modified)

Dynode Discrete Type

- Multi-stage photoelectron multiplication
- Different dynode structures

Box-and-grid

• High collection efficiency

Fine mesh

Good immunity to B-field

Linear focused

Circular cage

type

Compact, high speed

GRID

PHOTOELECTRONS

INCIDENT LIGHT

0=PHOTOCATH 10=ANODE 1 to 9=DYNODES

• Fast response, good linearity

Venetian blind

• Suitable for large diameter

Metal channel

• Compact, high speed

Dynode Non-discrete Type

Micro Channel Plate (MCP)

 Electron multiplication in micro glass capillaries (channels) →MCP-PMT

Silicon device as electron multiplier

- Photo-diode (PD), Avalanche photo-diode (APD)
- Hybrid PMT
 - →HPD, HAPD

APD

PHOTOCATHODE

Electron

bombardment

gain

1**500** time

Avalanche

gain

80 times

PHOTO-ELECTRONS

Voltage Divider

Electron multiplication at multistage dynodes

• Voltage divider circuit to provide proper voltage gradient over dynodes

• Two types of grounding scheme: anode grounded & cathode grounded

Anode grounded

• Both pulse and DC mode operations are possible

Cathode grounded

- Only pulse mode is possible
- Safer coupling between detector medium (scintillator) and PMT

Anode grounded

Voltage divider circuit

Cathode grounded

PMT

C1 : BYPASS CAPACITOR

Gain

$\boldsymbol{\cdot} \textbf{Secondary emission ratio } \boldsymbol{\delta}$

- Average # photoelectrons emitted per incident photoelectron at each dynode
- Dependent on inter-dynode voltage ΔV (=HV/ (n+1))
- Poisson fluctuation of $\delta(\sqrt{\delta}) \rightarrow$ main source of gain fluctuation

$$\delta_i \propto \Delta V^k \quad k = 0.7 - 0.8$$

$$\left| G = \delta_1 \cdot \delta_2 \cdots \delta_n \propto HV^{kn} \right|$$

$$ENF = \frac{\sigma_{\text{OUT}}^2}{\sigma_{\text{IN}}^2} = 1 + \frac{\sigma_{\text{M}}^2}{M^2} = 1 + \frac{1}{\delta_1} + \frac{1}{\delta_1 \cdot \delta_2} + \dots + \frac{1}{\delta_1 \cdot \delta_2 \cdots \delta_n}$$

Time Response

THBV4_0418EA

100 (mV/div)

Typical PMT signal

Parameters for photo-detector time response

- Waveform (rise-time, fall-time, S/N)
- Spread of electron transit time (Transit Time Spread, T.T.S.)

PMT is a fast photo-detector

- Carefully designed electron trajectories with minimum TTS
- TTS < 1ns

						0111.115
ics vs.	Dynode type	Rise time	Fall time	Pulse width (FWHM)	Electron transit time	T.T.S.
	Linear-focused	0.7 to 3	1 to 10	1.3 to 5	16 to 50	0.37 to 1.1
	Circular-cage	3.4	10	7	31	3.6
	Box-and-grid	to 7	25	13 to 20	57 to 70	Less than 10
	Venetian blind	to 7	Time characterist	ics vs. supply voltage	60	Less than 10
	Mesh	2.5 to 2.7	4 to 6	5	15	Less than 0.45
	Metal channel	0.65 to 1.5	1 to 3	1.5 to 3	4.7 to 8.8	0.4

Transit Time Spread (TTS)

Effect of External Magnetic Field

PMT is quite sensitive to external magnetic field

- Electron trajectory can easily be modified
- Somewhat dependent on dynode type
- Easily affected even by earth magnetic field ($\sim 0.05 \text{mT}$) \rightarrow need magnetic shield!

Some PMT type has moderate immunity, but strongly dependent on B-field direction Metal channel

MAGNETIC FLUX DENSITY (T)

MCP-PMT

• MCP

• Thin glass plate with many micro channels

Performance

- High gain of 10⁶ with two stage MCP
- Excellent time performance (TTS~50ps)
- Operational in B-field
- Position sensitive by segmented anode readout

Ageing issue

Photocathode damaged by neutral gas and feedback ion from MCP

TIME (0.2 ns/div)

MCP-PMT for Belle II TOP Counter

Belle II Time-Of-Propagation (TOP) counter

- Based on DIRC (Detection of Internally Reflected Cherenkov light) concept
- Linear array of MCP-PMT to measure one coordinate and time of propagation → 2D image reconstruction
- Excellent K-π separation

Short lifetime issue

- Photocathode damaged by neutral gas and feedback ion from MCP
- Extension of lifetime by ALD (atomic layer deposition) coating on MCP

LAPPD

Large Area Picosecond Photo Detector (LAPPD[™])

• MCP-based large area (and affordable) photodetector with picosecond timing

Performance

- Large area 20cm×20cm
- High gain 10⁷
- Excellent uniformity
- High photocathode QE
- Low dark noise rate (100Hz/cm² @gain=6×10⁶)
- mm position resolution (electronics limited)
- Timing resolution < 50ps (electronics limited)

Possible applications

- Neutrino experiments
- Collider experiments
- $0\nu\beta\beta$ experiments
- Medical

dead area due to mechanical support!

A.V. Lyashenko et al., NIMA958(2020)162834

Image Intensifier Tube

Principle

- Photo-cathode + MCP + Phosphor screen
- Low level light amplified to observable level

Night vision application

Metal Channel Dynode PMT

Metal channel dynode

- Electron multiplication confined in narrow channel
- Fast response
- Some immunity to magnetic field

Multi-anode PMT (MaPMT)

- Segmented anode readout → position sensitivity
- Application to RICH detector
 - AMS, COMPASS, GlueX,...

Flat panel PMT

- Hamamatsu H9500
- 50×50cm²
- Active area coverage 89%
- 16×16 multi anode readout (pixel size 2.8×2.8mm²)
- Crosstalk ~5%(typ)

Hamamatsu H9500

Micro-PMT

PMT is not necessarily bulky!

• µPMT[™] from Hamamatsu Photonics K.K.

- Produced by Micro Electro Mechanical Systems (MEMS) technology
- Tiny, easy to mass produce, high shock resistance

[SECTIONAL VIEW]

Hybrid Photo-detector (HPD)

Combination of vacuum-tube + solid-state electron multiplier

- Conversion of photon to photoelectron at photocathode
- Multiplication at solid-sate electron multiplier
- Hybrid Avalanche Photo-detector (HAPD) at Aerogel RICH (ARICH) at Belle II

Transmission type dynode

Developed for Timed Photon Counter (TipsyZero)

- Time resolution a few ps
- Position resolution ~10µm
- Compact
- Operational in B-field

Recent Tynode prototype

- 5nm MgO membranes coated with 2.5nm TiN
- Achieved transmission yields of 5.5

Transmission

Reflection

- Introduction
- Basic Properties of Photo-detector
- Vacuum photodetector
- Solid-state photodetector
- Comparison
- Summary

Solid-state Photodetector

Photodiode

- Simplest solid-state photodetector
- Photovoltaic effect in semiconductor PN junction (Si, InGaAs,...)
 - Depletion layer with internal electric field around P and N layers
 - Incident photon generates e-h pair around depletion layer and thus current even without bias voltage
 - Same mechanism as solar battery

PIN photodiode

- Un-doped intrinsic semiconductor regions between P and N layers (p-i-n diode)
- Higher field with external bias voltage

Performance

- QE~100%
- Large dynamic range
- Insensitive to B-field
- Cheap!
- but no internal gain (G~1)

Avalanche Photo-Diode (APD)

- Photodiode operated with higher reverse voltage
- Avalanche multiplication in depletion layer
- Main contribution from electron instead of hole because of its higher ionisation coeff.
- Internal gain (50-500) @ linear mode

KAPDC0006EC

The child Electronic culoriniteter

CMS ECAL

Crystal Barrel & Endcaps (PbWO₄) +

• Successful operation of APD at CMS barrel ECAL

- PbWO₄ crystal + APD (Hamamatsu S1848)
- Hamamatsu APD S1848
- two 5×5mm²
- High QE ~75%
- Gain ~50

Hamamatsu APD S1848 (two 5x5mm²)

Silicon Photomultiplier (SiPM)

• SiPM = Multi-pixelated Geiger-mode APD (G-APD)

- Tiny G-APD cells are connected in parallel together with resistor for selfquenching of avalanche
- Each G-APD cell is a "binary" device. The same charge from each photon trigger
- SiPM output is a sum of signals from triggered G-APD cells

SiPM output is proportional to # of impinging photons

- SiPM = "analogue" device
- Pioneering works by Russian institutes in late 80s (Golovin, Dolgoshein, Sadygov)

SiPM Advantages

Advantages

- High photon detection
 efficiency
- High internal gain
- Immunity to magnetic field
- Single photoelectron resolution
- Good timing resolution
- Low bias voltage
- Low power consumption
- Compact
- Low cost

Weak points

- Large area is difficult
- Temperature dependence
- Noise
- Radiation hardness
- Saturation

Sensor size (single)	1×1 - 6×6mm ²
Cell size (cell pitch)	10 - 100µm
Quench resistor	10k - 10MΩ
Internal gain	10 ⁵ - 10 ⁶
Photon detection efficiency (PDE)	20 - 50%
Time resolution (single photon)	O(100ps) (FWHM)
Dark noise rate	50k - 1M Hz/mm ²
Bias voltage	20 - 70 V

→ Possible replacement with PMT!

SiPM Producers

Signal Generation

SiPM cell operation cycle (simplified model)

1) Photo-generation of carrier \rightarrow avalanche (switch ON)

2 Self-quenching (switch OFF)

③ Re-charge cell

Signal for light detection

Convoluted with light emission time distribution

Single Photoelectron Resolution

Excellent single photoelectron resolution

- High internal gain
- Good cell-to-cell gain uniformity
- Can be worsened by electrical noise and pileup due to dark noise and after-pulsing
- Practically single photoelectron peak can not be resolved for >6×6mm² sensor area due to increasing dark noise
 - Good photoelectron resolution still possible even for large area sensor at low temp.

<u>Gain</u>

- High internal gain of 10⁵-10⁶
- Proportional to over-voltage ($\Delta V = V_{\text{bias}} V_{\text{bd}}$)
- Easily measured from single photoelectron charge
- Gain fluctuation is quite small
 - \bullet Cell-to-cell uniformity on capacitance and V_{bd}
 - Small statistical fluctuation in avalanche multiplication (↔ Poisson fluctuation in APD)

Photon Detection Efficiency (PDE)

 $PDE = \epsilon_{\rm FF} \cdot QE \cdot \epsilon_{\rm trg}$

Fill factor ε_{FF}

- Fraction of active area, typically 50-70%
- Dead area due to signal line, guard ring, trench,...

Quantum efficiency QE

- Probability of photo-generation of carrier
- Dependent on reflectivity on Si surface and absorption length in Si

• *E*trg

• Probability for generated carrier to trigger avalanche

Dependence on

- Wavelength
- Over-voltage
- temperature

PV EDUCATION.ORG homepage

Al conductor

Photon Detection Efficiency (PDE)

Geiger Efficiency

Blue photon

holes

p+

n+

n- epitaxial layer

p-on-n structure

→ Blue sensitive

• *E*trigger (electron) >> *E*trigger (hole)

 \rightarrow Higher PDE for carrier generated in p+ layer

λ-dependence of absorption length in Si

Red photon

holes

electrons

n++

p+

p-epitaxial layer

→ Green/Red sensitive

n-on-p structure

0.5 μ

 $2-4 \mu$

 \rightarrow Different λ -dependence of PDE depending on depth of p+ layer

Γ0.5 μ

2-4 u

Linearity

- Non-linearity (saturation) caused by finite number of cells
- Good linearity as long as $N_{\rm pe} < N_{\rm cell}$

Limiting factors

- Incoming photon intensity
- Cell size
- Cell recovery time
- Need careful calibration for many photons
- Smaller cell mitigates saturation

$$N_{\text{fired}} = N_{\text{cell}} \left(1 - e^{\frac{-N_{\text{photon}}PDE}{N_{\text{cell}}}} \right)$$

Response functions for the SiPMs with different total pixel numbers measured for 40 ps laser pulses

B. Dolgoshein, TRD2005

<u>Noise</u>

Dark noise

- Thermally generated carrier
- Random

Correlated noise

- Direct optical cross-talk
- Delayed optical cross-talk
- After-pulsing
- Correlated noise increases gain fluctuation and thus excess noise factor (ENF)
 - Energy resolution is deteriorated with increased ENF

$$ENF = 1 + \frac{\sigma_G^2}{G^2}$$

Dark Noise

Signal from avalanche triggered by randomly generated carrier

• Improved as <50kHz/mm² for recent devices

Two sources

- Thermally generated
 - Dominates at room temperature
 - Drastically reduced at low temperature
- "Field-assisted" generation (Tunnelling)
 - Dominates below 200K
- After-pulsing

Easy solution = Setting higher threshold (>1pe, 2pe, ...)

Optical Cross-talk

NIR luminescence during avalanche

- ~3 photons generated for 10⁵ carriers (A. Lacaita et al., IEEE TED 1993)
 - →NIR photon can generate carrier in neighbouring cell and then induce another avalanche

Two types of cross-talk

- Direct (same timing as primary signal)
- Delayed

Direct cross talk can be reduced by trench filled with opaque material

Optical crosstalk superimposed on primary pulse

F. Wiest et al., PhotoDet2012

After-pulsing

- Some of carriers are trapped in a deep trapping level in energy band gap → delayed release → trigger another avalanche
- Can be reduced by
 - Better quality of wafer and epi. layer
 - Reduced gain

 $A_2 \exp(-t/\tau_2) + A_N \exp(-t/\tau_N)$

- Quench resistor
 - Signal shape can be changed.
 - Improved by using metal quench resistor instead of poly-Si (Hamamatsu MPPC)

55

Time Resolution

Excellent timing performance of SiPM

Signal charge generated in very thin layer (< a few μm)

Single Photon Time Resolution (SPTR)

- Major component: Gaussian jitter ~O(100ps) (FWHM)
- Minor slow tail (~O(ns)) from carrier drift from neutral region

• Strong dependence on ΔV , weak dependence on λ

ow Field

Region /

S. Cova et al., NIST Workshop on Single Photon Detectors 2003

Region

Radiation Hardness

Radiation hardness → well-know issue of SiPM

Radiation damage

- Neutron, proton → Bulk damage by Non-Ionizing Energy Loss (NIEL)
- γ -ray, X-ray \rightarrow Surface damage at Si-SiO₂ interface by ionising energy loss

Effect of radiation damage

- Mostly increase of dark noise
- Change in breakdown voltage, gain and PDE for higher dose

Possible solutions

- Operation at lower temperature to reduce dark noise
- Reduce volume to be damaged by thinning down epitaxial layer or substrate
- Better insulator material to reduce surface damage
- Other material than Si?

ダークパルスアフタw.Collara,の増加n Detectors", EDIT2中性Fine2陽子になる損傷効果

New Development

Digital SiPM

- SiPM arrays with integrated electronics
- digital SiPM from Philips
- 3D-dSiPM for LXe TPC of nEXO (low temp.)

Features

- Counting # of fired cells
- Time stamp of first fired cell (per die)

3D-dSiPM

- Cell-by-cell active control \rightarrow disable hot cell
- Active quenching

Analog Silicon Photomultiplier Detector

Philips digital SiPM DPC6400-22-44 (DPC3200-22-44)

Outer dimensions	32.6×32.6 mm ²		
Pixel pitch	4×4 mm ²		
Pixel active area	3.9×3.2 mm ²		
# of cells	6936(3200)		
Cell size	59.4×32(64) mm ²		
Direct fill factor	54(74) %		
actor	75(55) %		
ias voltage	27±0.5 V		

Concept of digital SiPM

T. Frach et al., IEEE-NSS 2009

New Development

SiPM for deep UV light

- Detection for scintillation light from LXe (λ =175nm) and LAr (λ =128nm)
- Recent development by Hamamatsu and FBK

VUV-MPPC for MEG II LXe detector

- Hamamatsu MPPC S10943-4372
- PDE 15-20% at λ=175nm
- 12×12mm² (discrete array of four 6×6mm² chip)
- 50µm cell pitch
- Metal quench resistor
- Suppression of after-pulsing/cross-talk

VUV-MPPC for MEG II LXe detector al cable (~12m) 30 PDE Afterpu<u>tise probability</u> events pedestal \mathbb{S}^{25} 0.5 Number of 6 0.25 N_{pe}=1 efficiency 0.4 200.2 300 0.3 Photon detection 15 0.15 N_{ne}=2 0.2 200 10 0.1 0.1 100 5 0.05 LF S20 STD S 0.15 0.05 0.1 0.2 0.25 -0.1<u></u>∟ Charge [a.u.] 0^L 0 1 2 5 4 2 8 2 8 10 6 Overvoltage [V] Over-voltage [V] Over-voltage [V] K. leki et al., NIMA 925(2019)148-155 K. leki et al., NIMA 925(2019)148-155

VUV-SiPM from FBK

PDE for LAr scintillation light (λ =128nm)

- Introduction
- Basic Properties of Photo-detector
- Vacuum photodetector
- Solid-state photodetector
- Comparison
- Summary

Photo-detector Comparison

	PMT	PD/PIN	APD	SiPM
QE [%]	<40	<90	<90	<40 (PDE)
Gain	10 ⁶	1	10 ²	10 ⁶
Operating voltage	~1kV	0-5V	100-1kV	20-70V
Temp. sensivitiy	Low	Low	High	Medium
Size	Bulky	Compact	Compact	Compact
Large area	Yes	No	No	No
Time jitter [ns]	>0.05	NA	>0.2	>0.1
Mechanical robustness	No	Yes	Yes	Yes
B-field immunity	No	Yes	Yes	Yes
Noise	Low	Low	Medium	High
Price	High	Low	Low	Low

- Photo-detector choice depends on requirements for experiments!
- Recent trends = Replacement of PMT with SiPM

A large number of MPPCs totalling ~56,000 used in several detectors in T2K

- Working fine for ten years
- # of bad channel < 0.28% incl. problem of readout electronics

A. Minamino, Next generation photosensor worksop 2010

<u> \$10362-13-050C</u>	Spec	Item	
Developed for T2	1.3 x 1.3 mm ²	Active area	
	50 x 50 μm²	Pixel size	
1.3 m m	667	Num. of pixels	
	70 V (typical)	Operation voltage	
	~ 25 %	PDE @ 550nm	
	< 1.35 Mcps	Dark count	
Produced by	@ 25 deg.	(Gain = 7.5 x 10 ⁵)	
Hamamatsu Photon	(Thre. = 0.5 p.e.)		
1:	56,000	Num. of device	

Photonics

17

T. Kikawa, Next generation photosensor worksop 2012

Detector	# of ch	# of bad ch		Fraction of bad ch	
		2010	2012	2010	2012
INGRID	10796	18	37	0.17%	0.34%
FGD	8448	20	20	0.24%	0.24%
ECAL	22336	35	58	0.16%	0.26%
POD	10400	7	28	0.07%	0.27%
SMRD	4016	7	15	0.17%	0.37%
計	55996	87	158	0.16%	0.28%

(ND280) Barrel ECAL P0D ECAL

T2K off-axis near detectors

MPPC readout (FGD)

MEG II LXe Detector

Highly granular scintillation readout

- 216 × PMTs(2-inch) on γ-entrance face are replaced with 4092 × VUV-MPPCs (139mm² each)
- Energy and position resolutions will be improved by a factor of two.

Calorimeters for ILC

Highly granular calorimeter for ILC detector based on **Particle Flow Algorithm (PFA)**

- AHCAL: ~10⁷ × (30×30×3mm² scinti. tile + SiPM)
- ScECAL: ~10⁷ × (5×45×2mm² scinti. strip + SiPM)

SiPM technology allows

- SiPM and readout electronics are integrated in active volume

and work fina

AHCAL

Still Only Possible with PMT!

Hyper-Kamiokande

- Next generation neutrino experiment
- 10 times larger fiducial volume (190kton) than Super-Kamiokande (SK)
- 40000 × new PMT with 2 × sensitivity than SK

Has been approved!

• Aiming at start-up in 2027

Summary

Photo-detector is one of the most crucial items in HEP experiment detectors

Three types of photo-detector

- Vacuum photo-detector
- Solid-state photo-detector
- Gaseous photo-detector (not covered today)

Vacuum photo-detector

- ~100 years old!
- Successful applications in many HEP projects
- Still viable or even only possible solution for many projects
- Still improving performance even with new ideas

Solid-state photo-detector

- PD and APD have been successfully used in many HEP experiments
- Vast progress in development of SiPM technology since last two decades
- More and more applications of SiPM because of many advantages

Useful References

Lectures in previous EDIT

Vacuum photo-detector

- PMT Handbook (Hamamatsu Photonics K.K.)
- K.Arisaka, "Vacuum Photon Detectors", IEEE/NSS2012

Solid-state photo-detector

- Opt-semiconductor Handbook (Hamamatsu Photonics K.K.)
- V. Puill, "Tutorial SiPMs", NDIP2017
- G. Collazuol, "Status and Perspectives of Solid State Photo-detector", RICH2013

Gaseous photo-detector

• F. Sauli, "Photon detection and imaging with gaseous counters", NDIP2017