EDIT 2020 Irack 4: Gas Detectors

Introduction

Gas Detector Track

Introduction

- Organization
- Gas Detectors Basics
- Amplification
 - MPGD: GEM & Micromegas
- Signal Reconstruction
- Experiments
 - Basics: Fe55 spectrum
 - Gain measurement 1+2
 - GridPix gain studies
 - Fitting and pad Size studies

EDIT2020

Organization

- Locations:
 - Introduction lecture + simulation/analysis: seminar room 1b
 - All other tasks: detector lab in HERA hall west / building 50
 - 7 floors underground
 - Access with DACHS card: Everyone has to check in when entering and out when leaving
 - We need to track how many people are down

Tutors/Supervisors

- Hall West Lab
 - Ralf Diener
 - Markus Gruber (Task 14: GridPix Measuring Single Electrons)
 - Christoph Krieger
 - Felix Müller (Task 13: The Iron-55 Spectrum)
 - Oliver Schäfer (Task 15: Gain Determination by Measuring GEM Currents)
- Seminar Room 1b Analysis
 - Engin Eren
 - Remi Ete
 - Lennart Huth (Task 16: Impact of Readout Granularity)

Gas Detectors

"old-school"?

- Low material, low energy loss, low multiple scattering
- Comparably cheap to cover large areas/volumes
- Quasi continuous tracking i.e. in a time projection chamber \rightarrow excellent pattern recognition
- Particle identification via dE/dx measurement
- Resolution about 100 μ m, time 1-10 ns
 - Moderate single point resolution ↔ # of measurement points

- Uniform medium
- Equally spaced measurements
- Negligible multiple scattering
- valid for $N \ge 10$

$$\frac{\delta_{p_T}}{p_T^2} = \frac{\sigma_{r\phi}}{0.3 B L^2} \sqrt{\frac{720}{N+4}} \left[\frac{T m}{GeV/c} \right]$$

- $\frac{\delta_{P_T}}{P_T^2}$: momentum resolution $\sigma_{r\phi}$: single point resolution (\perp to bending plane) *L*: length of tracker (radius) *B*: magnetic field N *N*: number of measurement points
- Gas detector used in: CMS, ATLAS, ALICE, LHCb, Belle 2, TOTEM, COMPASS, CAST, T2K, NA48, DIRAC,...

Gas Detectors

Basic Principle

- The detectors discussed here work on the same principles (not covered: Cherenkov etc.)
- Charged particle or photon passes through the sensitive gas volume and ionizes the gas atoms or molecules, resp.
 - In the volume a sufficient electric field is applied to
 - Separate ions and electrons
 - Drift the electrons towards the readout
 - # of electrons too small to be read out directly:
 - Amplification in a strong electric field (avalanche effect)
 - Readout
 - Motion of electrons and ions close to the readout induces a current on the electrodes

• For tracking: magnetic field \rightarrow momentum determination from curvature/charge measurement

Ionization

Energy Loss

• Average energy loss: Bethe-Bloch

$$-\left|\frac{dE}{dx}\right| = \frac{4\pi}{m_e c^2} \cdot \frac{n z^2}{\beta^2} \cdot \left|\frac{e^2}{4\pi\epsilon_0}\right|^2 \left[\ln\frac{2m_e c^2\beta^2}{I\cdot(1-\beta^2)} - \beta^2\right]$$

with $n = \frac{N_A \cdot Z \cdot \rho}{A \cdot M_u}$

- Mostly depends on particle characteristics charge and momentum (dependence on medium rather weak: $Z/A \sim 1/2$)
- Straggling functions in moderate thin layers of medium:
 - Landau'ish behaviour: Long tail towards higher energy depositions (delta electrons)
- Ionization
 - Primary: electrons liberated from atoms/molecules
 - Secondary: all processes that need mediator process like e.g. ionization by energetic primary e⁻ → delta electrons

Ionization

Producing electrons

- Deposited energy derived from number of produced electrons
- Number of electrons produced: $n_e(dx) = \frac{dE}{dx} \cdot I^{-1}$
 - Depends linearly on transferred energy,
 I: average ionization energy (larger than I_{min}, excitation processes and energy of e⁻ / ion pair)
 - Number constrained by energy conservation and quantized liberation of shell e-
 - Standard deviation: $\sigma_{n_e} = \sqrt{F * n_e}$ F: Fano factor
- In Argon based gases at atm. pressure
 - Interactions/clusters per cm ~ 25
 - Average # e⁻ per cluster ~ 3-4
 - → #e⁻/cm ~ 90
 - F = 0.21

Drift

Basics

• In the applied field the primary/secondary electrons drift towards the readout at the anode

 $m_e \frac{d\vec{v}}{dt} = e\vec{E} + e(\vec{v} \times \vec{B}) - K\vec{v}$

Movement described by the Langevin equation

- Important parameters
 - Drift velocity: depends on gas mixture, E field
 - Diffusion: depends on gas mixture, E field, B field $\sigma = \sqrt{\sigma_0 + Dz}$

 m_e :electron mass e:electron charge \vec{v} :electron velocity \vec{E} :electric field \vec{B} :magnetic field K:frictional force coefficient caused by interaction with gas molecules

 σ : charge cloud width σ_0 : initial width D: diffusion coefficient z: drift distnce

Detector Gas

Choosing the Medium

- Usually a noble gas (inert) combined with a additions of quencher gases
- Commonly Argon is used
 - Cheap (3rd most common gas in athmospere)
 - Non toxic, non flammable/explosive
- Quenching gas Preventing discharges
 - Absorbtion of photons produced in avalanches before the produce new e⁻ at cathode
 - Often organic molecules: CO₂, CH₄, iC₄H₁₀ (isobutane), C₅H₁₂ (pentane),....
 - Choice should consider of polymerization \rightarrow aging
 - Sometimes additional additives to influence drift velocity, diffusion

electric field [V/cm]

Gas Amplification

Basics, Amplification Structures

- Amplification in high electric field
 - Electrons gain enough energy between collisions to ionize gas
 - Avalanche process
 - Often proportional region used

• Resistive Plate Chamber (RPC) / Drift tube

• MPGDs: Gas Electron Multiplier / Micromegas

Images from "Basics of Gaseous Detectors" lecture @ EDIT2011 S. F. Biagi, H. Schindler, R. Veenhof

GEM: Gas Electron Multiplier

Principle

- Introduced by F. Sauli (1996)
- Some 10 µm thick insulator (Kapton) coated on both sides with a few µm of conductor (copper)
- Highly perforated (CERN standard: 140 μ m pitch, 70 μ m hole diameter)
- Voltage of a few hundred volts applied between copper layers \rightarrow high field in holes (10's kV) \rightarrow amplification within the holes
- Gain up to about 10³ for a single GEM feasible
- Higher stability (at high integrated gain) with Multi-GEM-Structure
 - + more flexibility
 - → Intrinsic ion feedback suppression

Mgr - 200 K Here as a set of the set of the

Image from Gas Detectors Development group CERN, 2014, url: www.cern.ch/GDD.

DESY. | EDIT2020 | Track 4: Gas Detectors

GEM: Gas Electron Multiplier

Gain & Efficiency

- Gain usually means the effective Gain ${\rm G}_{\rm eff}$

 $G_{eff} = C \cdot G \cdot X$

- C: collection efficiency to pull incoming e⁻ into the hole
- G: gas gain inside the hole
- X: extraction efficiency to drift e^{-f}rom the hole

Image from desy-thesis-10-015, L. Hallermann: "Analysis of GEM Properties and Development of a GEM Support Structure for the ILD Time Projection Chamber"

GEM: Gas Electron Multiplier

lons

- Ion backflow
 - Ions produced in the amplification drift back into the drift volume
 - Unwanted: distort field, catch electrons
 - Ion backflow

 $IB = \frac{I_{cathode}}{I_{anode}}$

- ALICE-TPC GEM Upgrade
 - IB ~ 0.6 % at energy resolution of $\sigma/E < 12$ %
 - Ion backflow suppression of a
 - Single GEM $\sim 10^{-1}$
 - GEM stack ~ 10⁻²-10⁻³

Micromegas

Principle

- Introduced by I. Giomataris, G. Charpak et al. (1995)
- Parallel plate gas avalanche detector with a small gap
- Micromesh held by pillars 50 μm above the anode plane
- Several kV/cm between mesh and anode
 → gas amplification
- Additional resistive layer on anode protects against discharges

GridPix

Micromegas and Pixels

- InGrid: Micromegas on a Timepix chip
- Produced with wafer post-processing
- Mesh holes aligned with pixels of the chip: single e⁻ measurement

- 1. Formation of Si_xN_y protection layer
- 2. Deposition of SU-8
- 3. Pillar structure formation
- 4. Formation of Al grid
- 5. Dicing of Wafer
- 6. Development of SU-8

GridPix

Octopuce, He/iC4H10 (80/20), B = 1T, 5 GeV beam electron with two delta curlers, Dec 2010

Time Projection Chamber

Charge Signals

Time Projection Chamber

Time Projection Chamber

Reconstruction

• Straight line

$$x = f(y) = a y + b$$

• 2nd degree polynomial

$$x = f(y) = a y^2 + b y + c$$

• Circle

$$(x - x_0)^2 + (y - y_0)^2 = R^2$$

$$\rightarrow$$

$$x = f(y) = x_0 \pm \sqrt{\frac{1}{C^2} - (y - y_0)^2}$$

Basics

- ⁵⁵Fe is a radioactive isotope of iron with a nucleus containing 26 protons and 29 neutrons
 - Decays by electron capture to manganese-55, half-life of 2.737 yrs

 $^{55}Fe + e^- \rightarrow ^{55}Mn^*$ (⁵⁵Mn exited since e⁻ in K shell missing)

- 24.4% : disexitation of ${}^{55}\text{Mn}^*$ via $e^{\text{-}}$ coming from L shell $\rightarrow \gamma$ at 5.9 keV
- At used activities of a few 100 kBq relatively safe
 → low penetration depth, easy to shield
- Safety here in lab: sources build in prototypes
 - Handling of sources only by trained tutors
 - \rightarrow Do not open the prototype setups!

Image from desy-thesis-10-015 L. Hallermann: "Analysis of GEM Properties and Development of a GEM Support Structure for the ILD Time Projection Chamber"

Spectrum

• Processes in Argon: K shell 3.2 keV binding energy $\rightarrow e^{-}$ obtain E_{kin} of 2.7 keV

- r: 234 e⁻)
- Case 1+3: 5.9 keV photo peak (in Ar: 234 e^{-})
- Case 2: 3.0 keV escape peak (in Ar: 119 e⁻)

DESY. | EDIT2020 | Track 4: Gas Detectors

and Development of a GEM Support Structure for the ILD Time Projection

Chamber"

Electrons

- Released electrons
 - In pure Argon
 - W_{Argon} = 25.2 eV →

$$Np = \frac{{}^{55}Fe_{emission}[keV]}{W_{Ar}}$$

- 5.9 keV photo peak $: 234 e^{-1}$
- 3.0 keV escape peak: 119 e⁻
- For P5 gas:
 - W_{Argon} = 25.2 eV
 - W_{CH4} = 12.6 eV
 - \rightarrow e⁻ per peak?
- Isobutane
 - W_{i-C4H10} = 23.4 eV

$$Np = {}^{55} Fe_{emission} [keV] \times (\frac{\mathscr{M}_{Ar}}{W_{Ar}}) + {}^{55} Fe_{emission} [keV] \times (\frac{\mathscr{M}_{CH_4}}{W_{CH_4}})$$

DESY. | EDIT2020 | Track 4: Gas Detectors

Gain

Why?

- Via the gain one gets an estimate of signal over noise S/N
- Optimization of readout electronics
- Charge in the detector should be under control
- Ion backflow should be known and controlled
- Charged particle flow is one of the main factors in aging Too much charge can become a problem

Image from desy-thesis-10-015 L. Hallermann: "Analysis of GEM Properties and Development of a GEM Support Structure for the ILD Time Projection Chamber"

Gain Determination

- Determine Gain:
 - Calibrate preamplifier
 - Determine how much charge corresponds to a QDC count (QDC: charge to digital converter) using a defined input
 - Pedestal
 - Determine 0 of charge measurement by subtraction of noise peak position
 - Effective gain $\rm G_{\rm eff}$

$$G_{eff} = \frac{Q_{Anode, meas}}{Q_{Fe, initial}}$$

- Q_{Anode} : measured charge after GEM amplification
- Q_{Fe} : initially produced charge by iron-55 source (Np * e)

Image from desy-thesis-10-015 L. Hallermann: "Analysis of GEM Properties and Development of a GEM Support Structure for the ILD Time Projection Chamber"

Energy Resolution

- Energy resolution: width σ of photo peak
 - The "Fano factor" describes the uncertainty on # of e⁻ produced though ionization
 - So energy resolution cannot be better than

 $\frac{\sigma_E}{E} = \frac{\sigma_{n_e}}{n_e} = \frac{\sqrt{F * n_e}}{n_e}$

which is ~3% in Argon ($n_{e,Fe55, Argon} = 234, F_{Argon} \sim 0.2$)

• With the iron-55 spectra setup used here: a bit better than 10 % for high gains achievable

Image from desy-thesis-10-015 L. Hallermann: "Analysis of GEM Properties and Development of a GEM Support Structure for the ILD Time Projection Chamber"

Task 13: Iron-55 spectrum

The Iron-55 Spectrum

- Fe55 Iron Spectra Measurement
- Small TPC with iron-55 source
- One pad connected to a preamplifier and QDC (charge digitizer)
- Tasks
 - Build up trigger system and readout
 - Calibrate preamplifier and QDC
 - Analyze spectrum and plot gain curve
 - Determine the energy resolution

Task 14: GridPix

Measuring Single Electrons

- The GridPix is a Timepix pixel chip with a Micromegas gas amplification grid produced on top \rightarrow can detect single electrons
- Using a CAST-type GridPix detector, X-ray photons will be reconstructed to determine the gas gain and the energy resolution

• Tasks

- Prepare the setup
- Use monitoring tool to understand the data.
- Analysis using python scripts, understanding cuts
- Fit the resulting spectra to determine
 - Energy resolution
 - Gas gain

Task 15: Gain Determination by Measuring GEM Currents

CUMOS - NIM Modules to measure Nanoamperes

- CUMOS are specifically developed NIM modules able to measure currents in the nanoampere regime at several kilovolts
- They are used to determine GEM gain and ion backflow depending on triple GEM stack voltage settings
- Tasks
 - Set up the prototype
 - Determine by varying voltage settings of the setup:
 - Gain curve
 - Optimized ion backflow settings

GEM voltage [V]

Task 16: Impact of Readout Granularity

Analysis on Simulated Data - Reconstruction and Resolution

- A detailed time projection chamber simulation has been used to simulate kaons and pions including the drift, amplification and charge readout on the level of single electrons
- This has been done for different readout granularities, meaning pad sizes
- Tasks
 - Understand python and Root
 - Implement a track fit
 - Determine the single point resolution and compare the results for different pad sizes to find the optimal working point

Please bring your laptop to the task

Closing Slide

Final remarks

- Have fun!
 - But think first before doing things. In the lab there are several dangers ranging from high voltage to radioactive sources
- Do not hesitate to ask the tutors if you have questions.
 We'll try to help where we can.