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Gas Detector Track
Introduction

● Organization

● Gas Detectors Basics

● Amplification

● MPGD: GEM & Micromegas

● Signal Reconstruction

● Experiments

● Basics: Fe55 spectrum

● Gain measurement 1+2

● GridPix gain studies

● Fitting and pad Size studies



Page 3| EDIT2020 | Track 4: Gas Detectors

EDIT2020
Organization

● Locations: 

● Introduction lecture + simulation/analysis: 
seminar room 1b

● All other tasks: 
detector lab in HERA hall west / building 50
● 7 floors underground
● Access with DACHS card:

Everyone has to check in when entering
and out when leaving

← We need to track how
many people are down

Hall west
Building 50

Seminar
room 1b
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EDIT2020
Tutors/Supervisors

● Hall West - Lab

● Ralf Diener

● Markus Gruber (Task 14: GridPix - Measuring Single Electrons)

● Christoph Krieger

● Felix Müller (Task 13: The Iron-55 Spectrum)

● Oliver Schäfer (Task 15: Gain Determination by Measuring GEM Currents)

● Seminar Room 1b - Analysis

● Engin Eren

● Remi Ete

● Lennart Huth (Task 16: Impact of Readout Granularity)
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Gas Detectors
“old-school”? 

● Low material, low energy loss, low multiple scattering

● Comparably cheap to cover large areas/volumes

● Quasi continuous tracking i.e. in a time projection chamber → excellent pattern recognition
● Particle identification via dE/dx measurement
● Resolution about 100 μm, time 1-10 ns

● Moderate single point resolution ↔ # of measurement points

● Glückstern equation
● Uniform medium

● Equally spaced measurements

● Negligible multiple scattering

● valid for N ≥ 10

● Gas detector used in: CMS, ATLAS, ALICE, LHCb, Belle 2, TOTEM, COMPASS, CAST, T2K, NA48, DIRAC,...

δpT

pT
2
=

σr ϕ

0.3B L2 √
720
N+4 [ T m

GeV /c ]
δPT

PT
2

: momentum resolution

σr ϕ : single point resolution (⊥ to bending plane)
L : length of tracker (radius)
B : magnetic field N
N : number of measurement points
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Gas Detectors
Basic Principle

● The detectors discussed here work on the same principles (not covered: Cherenkov etc.)

● Charged particle or photon passes through the sensitive gas volume 
and ionizes the gas atoms or molecules, resp.

● In the volume a sufficient electric field is applied to
● Separate ions and electrons
● Drift the electrons towards the readout

● # of electrons too small to be read out directly:
● Amplification in a strong electric field 

(avalanche effect)

● Readout
● Motion of electrons and ions close to the 

readout induces a current on the electrodes

● For tracking: magnetic field → momentum determination from curvature/charge measurement

Image from O. Schäfer, DESY

Example: Time Projection Chamber (TPC)
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Ionization
Energy Loss

● Average energy loss: Bethe-Bloch

● Mostly depends on particle characteristics charge and momentum  
(dependence on medium rather weak: Z/A ~ 1/2 )

● Straggling functions in moderate thin layers of medium:

● Landau'ish behaviour: Long tail towards higher 
energy depositions (delta electrons)

● Ionization

● Primary: electrons liberated from atoms/molecules

● Secondary: all processes that need mediator process
like e.g. ionization by energetic primary e-

→ delta electrons

− ⟨dEdx ⟩ =
4 π

me c
2⋅
n z2

β
2 ⋅(e

2

4 πϵ0
)
2

[ ln 2me c
2
β

2

I⋅(1−β
2
)
−β

2 ]
with n=

N A⋅Z⋅ρ

A⋅M u

Image from ALICE, CERN

Image from P. Malek Image from HEED simulation 
by A. Münnich
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Ionization
Producing electrons

● Deposited energy derived from number of produced electrons

● Number of electrons produced: 

● Depends linearly on transferred energy, 
I: average ionization energy (larger than I

min
, excitation processes and energy of e- / ion pair)

● Number constrained by energy conservation and quantized liberation of shell e-

● Standard deviation: 
F: Fano factor

● In Argon based gases at atm. pressure

● Interactions/clusters per cm ~ 25

● Average # e- per cluster ~ 3-4

→ #e-/cm ~ 90

● F = 0.21

ne(dx )=
dE
dx

⋅I−1

σne
=√F∗ne

Image from HEED simulation done by A. Münnich
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Drift
Basics

● In the applied field the primary/secondary electrons drift towards the readout at the anode

● Movement described by the Langevin equation

● Important parameters

● Drift velocity: depends on gas mixture, E field

● Diffusion: depends on gas mixture, E field, B field

me

d v⃗
dt

=e E⃗+e ( v⃗×B⃗ )−K v⃗ me :electron mass
e :electron charge
v⃗ : electron velocity
E⃗ : electric field 
B⃗ : magnetic field 
K : frictional force coefficient caused
     by interaction with gas molecules

σ = √σ0+D z σ : charge cloud width
σ0 : initial width
D : diffusion coefficient
z :drift distnce
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Detector Gas 
Choosing the Medium

● Usually a noble gas (inert) combined with a 
additions of quencher gases

● Commonly Argon is used

● Cheap (3rd most common gas in athmospere)

● Non toxic, non flammable/explosive

● Quenching gas - Preventing discharges 

● Absorbtion of photons produced in avalanches 
before the produce new e- at cathode

● Often organic molecules:
CO

2
, CH

4
, iC

4
H

10
 (isobutane), C

5
H

12
 (pentane),….

● Choice should consider of polymerization → aging

● Sometimes additional additives to influence drift velocity, diffusion

Images from T. Lux
FLC group, DESY

P5 gas: Ar-CH
4  

95-5
TDR gas: Ar-CH

4
-CO

2
 93-5-2
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Gas Amplification
Basics, Amplification Structures

● Amplification in high electric field

● Electrons gain enough energy between 
collisions to ionize gas

● Avalanche process

● Often proportional region used

● Resistive Plate Chamber (RPC) / Drift tube

● MPGDs: Gas Electron Multiplier / Micromegas

Images from “Basics of Gaseous Detectors” lecture @ EDIT2011
S. F. Biagi, H. Schindler, R. Veenhof

Im
a

ge
 f

ro
m

 F
. 

S
ou

li,
 le

ct
u

re
 n

ot
es

, 
19

7
7



Page 12| EDIT2020 | Track 4: Gas Detectors

GEM: Gas Electron Multiplier 

● Introduced by F. Sauli (1996)

● Some 10 μm thick insulator (Kapton) coated on 
both sides with a few μm of conductor (copper)

● Highly perforated (CERN standard: 140 μm pitch, 70 μm hole diameter)

● Voltage of a few hundred volts applied between copper layers 
→ high field in holes (10's kV) → amplification within the holes

● Gain up to about 103 for a single GEM feasible

● Higher stability (at high integrated gain) 
with Multi-GEM-Structure 

+ more flexibility

→ Intrinsic ion feedback
suppression

Ions Elektrons

Image from Gas Detectors Development group 
CERN, 2014, url: www.cern.ch/GDD.
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GEM: Gas Electron Multiplier 
Gain & Efficiency

● Gain usually means the effective Gain G
eff

C: collection efficiency to pull incoming e- into the hole

G: gas gain inside the hole

X: extraction efficiency to drift e- from the hole
Image from A. Vogel
FLC group, DESY

Geff=C⋅G⋅X

Image from desy-thesis-10-015, L. Hallermann: “Analysis of GEM Properties 
and Development of a GEM Support Structure for the ILD Time Projection Chamber”

| EDIT2020 | Track 4: Gas Detectors
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GEM: Gas Electron Multiplier 
Ions

● Ion backflow

● Ions produced in the amplification drift back
 into the drift volume

● Unwanted: distort field, catch electrons

● Ion backflow

● ALICE-TPC GEM Upgrade
● IB ~ 0.6 % at energy resolution of σ/E < 12 %
● Ion backflow suppression of a 

● Single GEM ~ 10-1 
● GEM stack ~ 10-2-10-3 

Image from K. Zenker 
FLC group, DESYIB=

I cathode
Ianode
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Micromegas
Principle

● Introduced by I. Giomataris, G. Charpak et al. (1995)

● Parallel plate gas avalanche detector with a small gap

● Micromesh held by pillars 50 μm above the anode plane

● Several kV/cm between mesh and anode
→ gas amplification

● Additional resistive layer on anode protects 
against discharges
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GridPix
Micromegas and Pixels

● InGrid: Micromegas on a Timepix chip

● Produced with wafer post-processing

● Mesh holes aligned with pixels of the 
chip: single e- measurement

6. Development of SU-8

Chip

1. Formation of SixNy protection layer

2. Deposition of SU-8

3. Pillar structure formation

4. Formation of Al grid

5. Dicing of Wafer
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GridPix
Octopuce, He/iC4H10 (80/20), B = 1T, 5 GeV beam electron with two delta curlers, Dec 2010

Images from LCTPC collaboration
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Time Projection Chamber
Charge Signals 1

4

2

3
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Time Projection Chamber
Recorded Signals 1

4

2

3
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Time Projection Chamber
Reconstruction

x

y

track

● Straight line

● 2nd degree polynomial

● Circle

→ 

x = f  y  = a yb

x = f  y  = a y 2
b yc

x

y

track

X

Y

f  y  = a y 2
b y c

x−x 0 
2
 y −y 0 

2
=R 2

x−x 0 
2
 y −y 0 

2
=R 2

x = f  y  = x 0± 
1

C 2
−y−y 0 

2
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Iron-55
Basics

● 55Fe is a radioactive isotope of iron with a nucleus containing 26 protons and 29 neutrons

● Decays by electron capture to manganese-55, half-life of 2.737 yrs

● 24.4% : disexitation of 55Mn* via e- coming from L shell 
  → γ at 5.9 keV

● At used activities of a few 100 kBq relatively safe
→ low penetration depth, easy to shield

● Safety here in lab: sources build in prototypes
● Handling of sources only by trained tutors 

→ Do not open the prototype setups!

55 Fe+e−
→

55Mn ∗
( 55Mn exited since e- in K shell missing )

Image from desy-thesis-10-015
L. Hallermann: “Analysis of GEM Properties and
Development of a GEM Support
Structure for the ILD Time Projection
Chamber”
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Iron-55
Spectrum

● Processes in Argon: K shell 3.2 keV binding energy → e- obtain E
kin

 of 2.7 keV

● Gap in K shell filled by 2 different processes

● Photo effect with K shell W
kin

 = 2.7 keV

1) Auger effect W
kin

 = 3.2 keV

Prob.: 80 %

2) K-L fluorescence Wγ  = 2.9 keV 
→ large absorption length → escape undetected
Auger effect W

kin
 = 0.3 keV

Prob.: 16 %

● 3) Photo effect with L shell     W
kin

 = 5.6 keV

Auger effect W
kin

 = 0.3 keV

Prob.: 4 %

● Case 1+3: 5.9 keV photo peak    ( in Ar: 234 e- )
● Case 2: 3.0 keV escape peak ( in Ar: 119 e- )

Image from desy-thesis-10-015
L. Hallermann: “Analysis of GEM Properties 
and Development of a GEM Support
Structure for the ILD Time Projection
Chamber”
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Iron-55
Electrons

● Released electrons

● In pure Argon

● W
Argon

  = 25.2 eV

→ 
● 5.9 keV photo peak   : 234 e- 

● 3.0 keV escape peak : 119 e- 

● For P5 gas:

● W
Argon

  = 25.2 eV

● W
CH4

   = 12.6 eV

→  e- per peak?

● Isobutane

● W
i-C4H10

 = 23.4 eV

Np=
55 Feemission [keV ]×(

%Ar

W Ar

)+
55 Feemission [keV ]×(

%CH 4

W CH4

)

Np=
55Feemission[keV ]

W Ar
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Gain 
Why?

● Via the gain one gets an estimate of signal over noise S/N
● Optimization of readout electronics

● Charge in the detector should be under control
● Ion backflow should be known and controlled
● Charged particle flow is one of the main factors in aging

Too much charge can become a problem

Image from desy-thesis-10-015
L. Hallermann: “Analysis of GEM Properties 
and Development of a GEM Support
Structure for the ILD Time Projection
Chamber”
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Iron-55
Gain Determination

● Determine Gain:

● Calibrate preamplifier
● Determine how much charge corresponds to a QDC count

(QDC: charge to digital converter) using a defined input

● Pedestal 
● Determine 0 of charge measurement by 

subtraction of noise peak position

● Effective gain G
eff

● Q
Anode

 : measured charge after GEM amplification

● Q
Fe

: initially produced charge by iron-55 source (Np * e)
Image from desy-thesis-10-015
L. Hallermann: “Analysis of GEM Properties 
and Development of a GEM Support
Structure for the ILD Time Projection
Chamber”

Geff=
QAnode , meas

QFe , initial
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Iron-55
Energy Resolution

● Energy resolution: width σ of photo peak

● The “Fano factor” describes the uncertainty on 
# of e- produced though ionization

● So energy resolution cannot be better than

which is ~3% in Argon
(n

e,Fe55, Argon
 = 234, F

Argon
 ~ 0.2)

● With the iron-55 spectra setup used here: 
a bit better than 10 % for high gains achievable Image from desy-thesis-10-015

L. Hallermann: “Analysis of GEM Properties 
and Development of a GEM Support
Structure for the ILD Time Projection
Chamber”

σE

E
=

σne

ne

=
√F∗ne

ne
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Task 13: Iron-55 spectrum
The Iron-55 Spectrum

● Fe55 Iron Spectra Measurement

● Small TPC with iron-55 source

● One pad connected to a preamplifier
and QDC (charge digitizer)

● Tasks

● Build up trigger system and readout

● Calibrate preamplifier and QDC

● Analyze spectrum and plot gain curve

● Determine the energy resolution
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Task 14: GridPix
Measuring Single Electrons

● The GridPix is a Timepix pixel chip with a Micromegas gas 
amplification grid produced on top → can detect single electrons

● Using a CAST-type GridPix detector, X-ray photons will be 
reconstructed to determine the gas gain and the energy resolution

● Tasks

● Prepare the setup

● Use monitoring tool to understand the data.

● Analysis using python scripts, understanding cuts

● Fit the resulting spectra to determine
● Energy resolution
● Gas gain
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Task 15: Gain Determination by Measuring GEM Currents
CUMOS -  NIM Modules to measure Nanoamperes

● CUMOS are specifically developed NIM modules
able to measure currents in the nanoampere 
regime at several kilovolts

● They are used to determine GEM gain and ion backflow 
depending on triple GEM stack voltage settings 

● Tasks

● Set up the prototype 

● Determine by varying voltage settings of the setup:
● Gain curve
● Optimized ion backflow settings
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Task 16: Impact of Readout Granularity
Analysis on Simulated Data - Reconstruction and Resolution

● A detailed time projection chamber simulation
has been used to simulate kaons and pions 
including the drift, amplification and charge readout
on the level of single electrons

● This has been done for different readout
granularities, meaning pad sizes

● Tasks

● Understand python and Root

● Implement a track fit

● Determine the single point resolution
and compare the results for different pad sizes
to find the optimal working point

Please bring your laptop to the task



Page 31| EDIT2020 | Track 4: Gas Detectors

Closing Slide
Final remarks

● Have fun!

● But think first before doing things.
In the lab there are several dangers ranging
from high voltage to radioactive sources

● Do not hesitate to ask the tutors if you have questions. 
We'll try to help where we can.
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