

Overview and status of $t\bar{t}H$ measurements at the LHC

Marino Missiroli (DESY-CMS)

DESY HEP Students Seminar

February 11, 2019

Outline

- why $t\bar{t}H$? and how to look for it?
- overview of $t\bar{t}H$ searches, channel by channel
- combination of $t\bar{t}H$ searches
- quick look to the future
- summary

The SM Higgs boson

- The milestone of the LHC Run-1
 - $\circ~$ discovery of a new boson with $m\sim 125~{\rm GeV}~{\rm by}~{\rm ATLAS}~{\rm and}~{\rm CMS}$
- first discovered in bosonic decay modes: $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ^* \rightarrow 4\ell$
- thus far consistent with SM Higgs
- key to the SM Higgs: coupling to fermions
 - $\circ~H f \bar{f}$ Yukawa interaction leads to fermion masses
 - y_f coupling strength proportional to m_f

Higgs coupling to the top quark

- Top quark: the elementary particle with the largest mass
- Top-Higgs Yukawa coupling: the largest, close to 1 $(m_t \sim v/\sqrt{2})$

- Gluon Fusion (ggF) mechanism
 - main Higgs production mode at the LHC
 - SM: largest contribution from top quark loop
 - Higgs discovery at the LHC and $\sigma(pp \rightarrow H)$ so far consistent with SM \rightarrow indirect evidence of top-Higgs coupling
 - new physics could also be "hiding" in the loop
 → need to directly measure top-Higgs coupling

Higgs coupling to the top quark

- Top quark: the elementary particle with the largest mass
- Top-Higgs Yukawa coupling: the largest, close to 1 $(m_t \sim v/\sqrt{2})$

tt *t H* production

 \rightarrow direct measurement of top-Higgs coupling

- o rare Higgs production mode at the LHC
- one of the challenges: $t\bar{t} + X$ bkgs

$\sigma_{\rm SM}~(\sqrt{s}$:	= 13 TeV) [*]	
$t\bar{t}$	831.8 pb	[*] approx. values
$t\bar{t}+b\bar{b}$	3.5 pb	
$t\bar{t}V$	1.5 pb	
$t\bar{t}H$	0.5 pb	
tH	0.07 pb	

$t\bar{t}H$ final states

"what to look for ...

- $t\bar{t}H$ searches \Rightarrow many different final states
- combination of all possible decay modes of a $t\bar{t}$ pair and a Higgs

Top Pair Branching Fractions

Decays of a 125 GeV Standard-Model Higgs boson

ATLAS and CMS

... and how to look for it"

- $t\bar{t}H$ searches \Rightarrow a testbed for general-purpose detectors at the LHC
- all physics objects enter the game: γ , e, μ , τ , (b-)jets, MET

Grouping $t\bar{t}H$ searches

- $t\bar{t}H$ multilepton:

 - events with ≥ 3 charged leptons, including hadronic τ decays
 - keys: lepton identification, control over fake-lepton bkgs
- $t\bar{t}H$ with $H \rightarrow b\bar{b}$ decays:
 - 0, 1 or 2 leptons
 + many jets, with up to 4 b-tags
 - keys: jet b-tagging, separation of $t\bar{t}H(b\bar{b})$ signal from $t\bar{t}+b\bar{b}$ bkg
- $t\bar{t}H$ with $H \to \gamma\gamma$ and $H \to 4\ell$ decays:
 - o high purity, but lowest signal yields

$t\bar{t}H \rightarrow multilepton$

ATLAS : HIGG-2017-02 CMS : HIG-18-019

$t\bar{t}H$ multilepton

- targets $H \rightarrow WW^*, ZZ^*, \tau\tau$ decays
- lepton channels: (with ≥ 2 jets and $\ge 1/2$ b-tags)

- Main backgrounds:
 - $t\bar{t} + V$ and VV: shape from MC, normalization from CRs
 - fake-lepton bkg (from $t\bar{t}$ + jets): fully data-driven

DESY HEP Students Seminar | $t\bar{t}H$ measurements at the LHC

$tar{t}H$ multilepton / lepton-ID and fake- ℓ bkg

- lepton identification is key
 - \implies not too loose (large fake- ℓ bkg), not too tight (low signal yield)
- ATLAS loose isolation cut, with p_T^ℓ -dependent iso-cone

CMS BDT-based using lepton properties + energy deposits around lepton

- data-driven fake-*l* bkg estimate:
 - separate estimate for e, μ , $\tau_{\rm h}$, and for each SR
 - 1st CR used to parametrize fake-ℓ mistag wrt lepton kinematics
 - fake-ℓ mistag applied to Data from 2nd CR, to estimate non-prompt ℓ bkg in SRs

$t\bar{t}H$ multilepton / SR discriminants

• final discriminants: outputs of BDTs based on event kinematics

$t\bar{t}H$ multilepton / systematics

• main systematics:

- o lepton ID, jet energy scale, b-tagging eff.
- $\circ~$ fake- $\ell~$ bkg and MC modeling of $t\bar{t}+V~ {\rm and}~ t\bar{t}H$

onno						
Source	Uncertainty [%]	$\Delta \mu / \mu$ [%] (2017)				
Theoretical sources	≈ 8	8				
e, μ selection efficiency	3–5	4				
$\tau_{\rm h}$ selection efficiency	5	3				
$\tau_{\rm h}$ energy calibration	1.2	1				
b tagging efficiency	2-15 [48]	10				
Jet energy calibration	2-15 [56]	3				
Fake background yield	$\approx 30-50$	17				

CMS

$t\bar{t}H$ multilepton / results

		$t\bar{t}H$ multilepton	Signifi	cance: Obs (Exp)
•	evidence of $t\bar{t}H$	ATLAS (2016)	4.1σ	(2.8σ)
	in multilepton final states	CMS (2017)	1.7σ	(2.9σ)
		CMS (2016+2017)	3.2σ	(4.0σ)

$t\bar{t}H$ with $H\to b\bar{b}$

ATLAS : HIGG-2017-03 CMS : HIG-17-022, HIG-17-026

$t\bar{t}H(b\bar{b})$

- 3 channels based on $t\bar{t}$ decay mode
 - single-lepton (SL), dilepton (DL)
 - [CMS-only] fully-hadronic (FH)

[will focus on SL and DL (the 2 most sensitive channels)]

- main bkg: tt + jets, modeled with MC (POWHEG)
 irreducible tt + bb bkg with large modeling unc.
- Goal #1 construct samples with high $t\bar{t} + b\bar{b}$ purity
 - $\circ~$ jet b-tagging is key, to reduce $t\bar{t}+$ light bkg
- Goal #2 construct discriminants to distinguish $t\bar{t} + b\bar{b}$ and $t\bar{t}H(b\bar{b})$
 - $\circ~H(b\bar{b})$ candidate cannot be uniquely identified due to b-jet combinatorics \Rightarrow MVA techniques

$tar{t}H(bar{b})$ / categories: pre-fit yields and S/\sqrt{B}

CMS : SRs based on N_{jets} and N_{b-tags} (1-btag Working Point)

ATLAS : SRs and CRs based on N_{iets} and b-tag purity (4 b-tag WPs)

$t\bar{t}H(b\bar{b})$ / final discriminants in SRs

ATLAS : combination of BDT methods (jet-parton assignment + event classification)

CMS : (SL) multi-class DNN to separate $t\bar{t} + hf$, $t\bar{t} + hf$ and $t\bar{t}H$; (DL) BDT

$t\bar{t}H(b\bar{b})$ / systematics

• main systematics:

 $t\bar{t}H$ measurements at the LHC

$t\bar{t}H(b\bar{b})$ / post-fit discriminants

35.9 fb⁻¹ (13 TeV)

ղուր

signa

tf+cc

tť+2b

Ttf+V

Single t

Uncertainty

35.9 fb⁻¹ (13 TeV)

signa

tt+cc

tt+2b

0.7

Single t

Uncertainty

$t\bar{t}H(b\bar{b})$ / results

- small excess of events compatible with SM tt
 *t t*H
- best-fit signal strength:
 - systematic unc. > stat. unc.
 - (but stat. unc. still far from negligible)

$t\bar{t}H(b\bar{b})$	Significance: Obs (Exp)		
ATLAS (2016)	1.4σ	(1.6σ)	
CMS (2016)	1.6σ	(2.2σ)	

$t\bar{t}H$ with $H\to\gamma\gamma$

ATLAS : HIGG-2018-13 CMS : HIG-18-018

$t\bar{t}H(\gamma\gamma)$

- $\gamma\gamma$: a golden channel, but sensitivity to $t\bar{t}H$ production requires a lot more data (compared to $gg \rightarrow H$)
 - o $\sigma_{t\bar{t}H} \cdot \mathsf{BR}(H \to \gamma \gamma) \simeq (0.5 \text{ pb})(0.2\%) \simeq 1 \text{ fb}$
 - $\gamma\gamma$ pair: a well-defined Higgs candidate with good mass resolution ($\delta m_{\gamma\gamma} \sim 2 \text{ GeV}$)

[similar analysis strategies for ATLAS and CMS]

- Event selection: $\gamma\gamma$ + (0, 1 or 2) leptons + jets
 - 2 Event-BDTs trained with MC to tag $t\bar{t}H$ -leptonic and $t\bar{t}H$ -hadronic events
- Signal extraction: $m_{\gamma\gamma}$
 - o bkg and signal parameterized with analytical functions

$t\bar{t}H(\gamma\gamma)$ / ttH-Lep and ttH-Had categories

• ttH-BDT inputs: γ , ℓ and jets kinematics, b-tag scores (no info on $m_{\gamma\gamma}$)

 $t \bar{t} H(\gamma \gamma)$ / $m_{\gamma \gamma}$ fits

$t\bar{t}H(\gamma\gamma)$ / results

$t\bar{t}H$ with $H\to ZZ^*\to 4\ell$

ATLAS : HIGG-2018-13 CMS : HIG-18-001

DESY HEP Students Seminar | $t\bar{t}H$ measurements at the LHC

$t\bar{t}H(4\ell)$

 $ZZ^* \to 4\ell$: another golden channel, but even more limited in statistics than $t\bar{t}H(\gamma\gamma)$

• $\sigma_{t\bar{t}H} \cdot \mathsf{BR}(H \to 4\ell) \simeq (0.5 \text{ pb})(0.02\%) \simeq 0.1 \text{ fb}$

Higgs candidate: 4ℓ system

[similar analysis strategies for ATLAS and CMS]

- Event selection:
 - $\circ~$ standard 4ℓ selection + requirements on add. leptons and/or jets to construct ttH-Lep and ttH-Had categories
- with $\sim 80 \text{ fb}^{-1}$: order of 1 $t\bar{t}H(4\ell)$ event expected

$t\bar{t}H(4\ell)$ / results

$t\bar{t}H$ combination

ATLAS : HIGG-2018-13 CMS : HIG-17-035

$t\bar{t}H$ combination

- Apr-Jun 2018: each experiment combined all available $t\bar{t}H$ searches
 - Run-1 (8 TeV) data + Run-2 data (13 TeV) up to 2016 [ATLAS also included 2017 data for $\gamma\gamma$ and 4ℓ]
- Plot: bins of all searches ranked by $\log_{10}(S/B)$

$t\bar{t}H$ observation at CMS

$t\bar{t}H$ observation at ATLAS

Looking ahead

Ways to improve

A non-comprehensive list

- all $t\bar{t}H$ analyses will profit from more data
 - $\gamma\gamma$ and 4ℓ limited by statistics
 - $t\bar{t}H(b\bar{b})$: stronger constraint on $t\bar{t} + hf$ bkgs from bins w/ low S/B
 - multilepton: constraints on $t\bar{t}V$, and more stats for fake- ℓ bkg estimate
- upgraded detectors
 - Examples: CMS Phase-1 Pixel installed in Jan 2017, Phase-2 upgrades
- improved object reconstruction methods
 - Example: jet b-tagging (next slide)
- improvements to analysis techniques
 - Example: MVA discriminants

 $(S/B \text{ discriminants in multilepton and } t\bar{t}H(b\bar{b}))$

New b-tagging methods in CMS

Near future

application of latest ML techniques to b-tagging algorithms

Refs: CMS-DP-2017-005, CMS-DP-2017-013

[CSV = Combined Secondary Vertex; b-tagging algorithm most widely used in CMS up to 2016]

DESY HEP Students Seminar | $t\bar{t}H$ measurements at the LHC

HL-LHC Projections

Not-so-near future

- ATLAS and CMS projections for physics analyses at HL-LHC:
 - Higgs Chapter: Higgs Physics at the HL-LHC and HE-LHC
- $\Delta \sigma_{t\bar{t}H} = 4.3\%$ (S2) projected for ATLAS+CMS at 3000 fb^{-1} per experim.
 - S2: assumes lumi-scaling of some syst, and reduced theory unc.

Summary

- observation of $t\bar{t}H$ production by ATLAS and CMS
 - required the analysis of many different final states, using both Run-1 and Run-2 data
 - observed $t\bar{t}H$ signal strengths in good agreement with SM, measured with approx. 20% uncertainty
- measurements with full Run-2 data set ($\sim 140 \text{ fb}^{-1}$) underway
 - \circ some analyses already updated with 2017 data ($\sim 80~{
 m fb}^{-1}$)
 - $\circ~$ evidence of $t\bar{t}H$ signal in (some) individual decay channels
 - increased sensitivity expected with more data and improvements to reconstruction/analysis methods (e.g. b-tagging)
- HL-LHC projections:
 - $\,\circ\,$ realistic goal to reduce $\Delta\sigma_{t\bar{t}H}$ to O(5%) by the end of Phase-2