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1max += NN

Ab initio nuclear theory and the no-core shell model (NCSM)

▪ Our goal is to solve the many-body Schrödinger equation

▪ NCSM is an ab initio non-relativistic approach with nucleons as the 
degrees of freedom

▪ nuclear interactions are the only input

▪ expand in anti-symmetrized products of harmonic oscillator single particle 
states (parameters 𝑁𝑚𝑎𝑥 and ℏΩ)
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Problem…

▪ NCSM is a rigorous model

▪ Computational complexity grows 
exponentially with basis truncation 
parameter 𝑁𝑚𝑎𝑥

▪ Calculations should converge as 
𝑁𝑚𝑎𝑥 → ∞

▪ Meaningful calculations at very large 
𝑁𝑚𝑎𝑥 or for larger nuclear systems 
are computationally infeasible
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More problems…

▪ Functional form of energy 
convergence curve with respect to 
𝑁𝑚𝑎𝑥 is unknown (near the ℏΩ
variational minimum)

▪ Ad hoc functions are used to attempt 
approximate extrapolations
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More problems…

▪ Functional form of energy 
convergence curve with respect to 
𝑁𝑚𝑎𝑥 is unknown (near the ℏΩ
variational minimum)

▪ Ad hoc functions are used to attempt 
approximate extrapolations

Require use of computational techniques to predict 
energy as 𝑵𝒎𝒂𝒙 → ∞ (want meaningful errors)
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𝑦 ~ − 𝐸

𝑥 ~ 𝑁𝑚𝑎𝑥

Mathematical problem statement

▪ Given some discrete data set y = 𝑦𝑖 = 𝑦 𝑥𝑖 , can we determine 
the underlying functional form 𝑦(𝑥)

▪ Is it determined well enough to make predictions 𝑦∗ = 𝑦(𝑥∗)?
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Parametric and non-parametric models

Typical extrapolation - Parametric

▪ Select a functional form with some parameters

▪ Determine most likely values for parameters 𝑝 given assumed error 
distribution 𝜖 𝑥

Gaussian process - Non-parametric

▪ Make assumptions on functional behaviour

▪ Consider conditional probability of predictions given data 𝑝 𝑦∗ 𝑦 to 
constrain function space further than a typical GP
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Gaussian processes (GPs): Part 1

Overview

▪ GP is collection of infinite number of random variables with mean function 
𝑚(𝑥) and covariance function r(𝑥, 𝑥′)

▪ GPs are distributions over function spaces

▪ provide interpolations with uncertainties

▪ functional behaviour selected based on covariance of prediction sites and 
data points

▪ can be improved by incorporating derivative constraints

▪ Extending work of Golchi et al [1], we attempt GP extrapolation by 
constraining first and second derivatives



9

Gaussian processes (GPs): Part 2

Key assumption on the prior

▪ Points {𝑦𝑘} drawn from multivariate Gaussian distribution (GD) with 
covariance function 𝐶[𝑦𝑖 , 𝑦𝑗] defined by kernel choice

▪ Assumption of ‘smoothness’ on space of functions, nearby inputs have 
nearby outputs

▪ If 𝑥𝑖 − 𝑥𝑗 ~ 𝑙 then 𝑦𝑖 − 𝑦𝑗 > 𝜎 is unlikely

Gaussian kernel
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Gaussian processes (GPs): Part 3

Calculation

▪ Extending to vectors, 𝑦 (data) and 𝑦∗ (function at select 𝑥∗ points) form 
joint GD and are drawn with mean ҧ𝜇 and covariance matrix തΣ

Gaussian ‘trick’

▪ Can compute probability of function predictions 𝑦∗ given input data

▪ where
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Example of sampling

▪ New points are random samples from a Gaussian distribution

▪ Points can be sampled sequentially (depending on all the previous)

𝑦 ~ − 𝐸

𝑥 ~ 𝑁𝑚𝑎𝑥

𝑦 ~ − 𝐸

𝑥 ~ 𝑁𝑚𝑎𝑥
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Example of sampling

▪ New points are random samples from a Gaussian distribution

▪ Points can be sampled simultaneously (from higher-dimensional Gaussian)

𝑦 ~ − 𝐸

𝑥 ~ 𝑁𝑚𝑎𝑥

𝑦 ~ − 𝐸

𝑥 ~ 𝑁𝑚𝑎𝑥
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Extrapolation problem

▪ While GP interpolates data as a requirement, error bars explode 
outside of the data range

▪ How do we deal with this radical behaviour?

𝑦 ~ − 𝐸

𝑁𝑚𝑎𝑥

6He
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Extrapolation problem

▪ We know what functional behaviour we need (and don’t want)

▪ Can we incorporate this information into the GP?

𝑦 ~ − 𝐸

𝑁𝑚𝑎𝑥

𝑦′ < 0

BAD

𝑦 ~ − 𝐸

𝑁𝑚𝑎𝑥

𝑦′′ > 0

BAD
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GPs with derivatives: Part 1

Constraining derivatives

▪ Define binary random variables representing sign of derivatives 𝑦𝑖
′ and 𝑦𝑗

′′

▪ Weight probability of sample 𝑝 𝑦∗ 𝑦 ~𝒩 𝜇∗, Σ∗ ×𝑚 𝑦′ × 𝑛(𝑦′′) where
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GPs with derivatives: Part 1

Constraining derivatives

▪ Define binary random variables representing sign of derivatives 𝑦𝑖
′ and 𝑦𝑗

′′

▪ Weight probability of sample 𝑝 𝑦∗ 𝑦 ~𝒩 𝜇∗, Σ∗ ×𝑚 𝑦′ × 𝑛(𝑦′′) where

How do we 

compute these?
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GPs with derivatives: Part 2

Computing derivatives

▪ The derivative of a GP is a GP

▪ 𝑦𝑖
′ = ቚ

𝑑𝑦

𝑑𝑥 𝑥=𝑥𝑖
′

and 𝑦𝑖
′′ = ቚ

𝑑2𝑦

𝑑𝑥2 𝑥=𝑥𝑖
′′

also jointly Gaussian distributed with 𝑦, 𝑦∗

▪ Similarly draw derivative values at select 𝑥′ and 𝑥′′ points

▪ Can conveniently compute covariance of derivatives based on information 
from derivatives of kernel

▪ Calculate probability of all function behaviour given 𝑦
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GPs with derivatives: Part 3

Obtaining distribution

▪ Want the posterior distribution

▪ GP method only generates the likelihood

▪ Could generate samples (Monte-Carlo) from likelihood and accept/reject 
based on posterior distribution (inefficient)

▪ Perform Sequential Monte-Carlo (SMC) by adjusting distribution of 
samples over small constraint steps (efficient)
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Sequential Monte-Carlo (SMC): Part 1

Parameterizing continuous constraints

▪ Apply constraint as function of new parameters 𝜏1 and 𝜏2

▪ Alter definition of variables representing sign of derivatives

▪ Construct discrete constraint 
schedule with small steps of 
constraint increase (simultaneous or 
asynchronous constraint application)

𝜙

𝑦′
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Sequential Monte-Carlo (SMC): Part 2

Setting up SMC

▪ Under constraints, 𝑦, 𝑦′ and 𝑦′′ are no longer GPs

▪ Inferences must be made using point-wise sampling, so algorithm is 
tailored to monotonic/convex function interpolation

SMC inputs

▪ Sequence of constraint parameters 𝜏1, 𝜏2

▪ Proposal distributions for GP parameters 𝑙 and 𝜎2

▪ Particle number 𝑁
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Sequential Monte-Carlo (SMC): Part 3

SMC algorithm and particle filter

▪ Draw 𝑁 samples (particles with 𝑦∗, 𝑦′, 𝑦′′ 𝑇) from unconstrained GP

▪ For 𝜏1, 𝜏2 from 0 to ∞

‒ for all particles 1:𝑁

→ propose new 𝑙, 𝜎2 and particles 𝑦∗, 𝑦′, 𝑦′′ 𝑛𝑒𝑤
𝑇 close to 𝑦∗, 𝑦′, 𝑦′′ 𝑇

→ accept/reject new particles according to

‒ resample: assign particle weights based on change under constraints

→ throw away bad particles

→ replace with copies of ‘better’ particles (weighted by constraints)
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Results for 4He at extrapolation value 𝑵𝒎𝒂𝒙 = 𝟏𝟔

4He 4He 4He

4He 4He 4He

𝑡 = 1 𝑡 = 20 𝑡 = 40

𝑡 = 60 𝑡 = 80 𝑡 = 100
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24𝑡 = 20



25𝑡 = 40



26𝑡 = 60



27𝑡 = 80



28𝑡 = 100
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Results for 4He at extrapolation value 𝑵𝒎𝒂𝒙 = 𝟏𝟔

4He
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Ensemble results for 4He at extrapolation value 𝑵𝒎𝒂𝒙 = 𝟏𝟔
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Conclusions

Summary

▪ Application of derivative knowledge correctly constraining function space

▪ Demonstrated viability of extrapolation by constrained GPs

References
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Outlook

▪ Can we push the extrapolations to much larger 𝑁𝑚𝑎𝑥 values?

▪ Add additional harmonic oscillator basis parameter ℏΩ to model
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Follow us @TRIUMFLab

www.triumf.ca

Thank you
Merci
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GPs with derivatives

𝐶∗1
𝑖𝑗

= 𝐶 𝑦𝑖
∗, 𝑦𝑗′ =

𝜕

𝜕𝑥𝑗
𝑟 𝑥𝑖

∗, 𝑥𝑗
′

⋮

𝐶22
𝑖𝑗

= 𝐶 𝑦𝑖
′′, 𝑦𝑗′′ =

𝜕2

𝜕2𝑥𝑖

𝜕2

𝜕2𝑥𝑗
𝑟 𝑥𝑖

′′, 𝑥𝑗′′


