% TRIUMF

Extrapolating nuclear many-body calculations with constrained Gaussian processes

Michael Gennari

P. Gysbers, W. Fedorko, P. Navrátil

Discovery, accelerate

Ab initio nuclear theory and the no-core shell model (NCSM)

Our goal is to solve the many-body Schrödinger equation

$$H|\Psi_k\rangle = E_k|\Psi_k\rangle \qquad \qquad H = \sum_i^A T_i + \sum_{i < j} V_{ij} + \sum_{i < j < f} V_{ijf} + \cdots$$

 NCSM is an *ab initio* non-relativistic approach with nucleons as the degrees of freedom

- nuclear interactions are the only input
- expand in anti-symmetrized products of harmonic oscillator single particle states (parameters N_{max} and $\hbar\Omega$)

$$\Psi^{A} = \sum_{N=0}^{Nmax} \sum_{i} c_{Ni} \Phi_{Ni}^{A}$$

Problem...

- NCSM is a rigorous model
- Computational complexity grows exponentially with basis truncation parameter N_{max}
- Calculations should converge as $N_{max} \rightarrow \infty$
- Meaningful calculations at very large N_{max} or for larger nuclear systems are computationally infeasible

More problems...

- Functional form of energy convergence curve with respect to N_{max} is unknown (near the ħΩ variational minimum)
- Ad hoc functions are used to attempt approximate extrapolations

$$E = E_{\infty} + \alpha e^{-\beta N_{max}}$$

More problems...

- Functional form of energy convergence curve with respect to N_{max} is unknown (near the ħΩ variational minimum)
- Ad hoc functions are used to attempt approximate extrapolations

$$E = E_{\infty} + \alpha e^{-\beta N_{max}}$$

Require use of computational techniques to predict energy as $N_{max} \rightarrow \infty$ (want meaningful errors)

Mathematical problem statement

- Given some discrete data set $y = \{y_i\} = \{y(x_i)\}$, can we determine the underlying functional form y(x)
- Is it determined well enough to make predictions $y^* = y(x^*)$?

Parametric and non-parametric models

Typical extrapolation - Parametric

- Select a functional form with some parameters $y(x) \sim f(x,p) + \epsilon(x)$
- Determine most likely values for parameters p given assumed error distribution $\epsilon(x)$

$$E = E_{\infty} + \alpha e^{-\beta N_{max}}$$

7

Gaussian process - Non-parametric

- Make assumptions on functional behaviour
- Consider conditional probability of predictions given data p(y*|y) to constrain function space further than a typical GP

Gaussian processes (GPs): Part 1

Overview

 GP is collection of infinite number of random variables with mean function m(x) and covariance function r(x, x')

$$\vec{y} = (y_1, \dots, y_n)^T \sim \mathcal{N}(\mu, \Sigma) \quad \rightarrow \quad y = y(x) \sim \mathcal{N}(m(x), r(x, x'))$$

- GPs are distributions over function spaces
 - provide interpolations with uncertainties
 - functional behaviour selected based on covariance of prediction sites and data points
 - can be improved by incorporating derivative constraints
- Extending work of Golchi et al [1], we attempt GP extrapolation by constraining first and second derivatives

Gaussian processes (GPs): Part 2

Key assumption on the prior

Points {y_k} drawn from multivariate Gaussian distribution (GD) with covariance function C[y_i, y_j] defined by kernel choice

 Assumption of 'smoothness' on space of functions, nearby inputs have nearby outputs

• If
$$|x_i - x_j| \sim l$$
 then $|y_i - y_j| > \sigma$ is unlikely

Gaussian processes (GPs): Part 3

Calculation

• Extending to vectors, y (data) and y^* (function at select x^* points) form joint GD and are drawn with mean $\overline{\mu}$ and covariance matrix $\overline{\Sigma}$

$$p\left(\begin{bmatrix} y\\ y^* \end{bmatrix}\right) = \mathcal{N}(\bar{\mu}, \bar{\Sigma}) = \mathcal{N}\left(\begin{bmatrix} \mu\\ \mu^* \end{bmatrix}, \begin{bmatrix} C & C_*\\ C_*^T & C_{**} \end{bmatrix}\right) \qquad \begin{array}{c} C^{(ij)} = C[y_i, y_j] = r(x_i, x_j) \\ C_*^{(ij)} = r(x_i, x_j^*) \qquad C_{**}^{(ij)} = r(x_i^*, x_j^*) \end{array}$$

Gaussian 'trick'

Can compute probability of function predictions y* given input data

$$p(y^*|y) = \mathcal{N}(\mu_*, \Sigma_*)$$

where

$$\mu_* = C_*^T C^{-1} y \qquad \Sigma_* = C_{**} - C_*^T C^{-1} C_*$$

Example of sampling

- New points are random samples from a Gaussian distribution
- Points can be sampled sequentially (depending on all the previous)

Example of sampling

- New points are random samples from a Gaussian distribution
- Points can be sampled simultaneously (from higher-dimensional Gaussian)

Extrapolation problem

- While GP interpolates data as a requirement, error bars explode outside of the data range
- How do we deal with this radical behaviour?

Extrapolation problem

- We know what functional behaviour we need (and don't want)
- Can we incorporate this information into the GP?

Constraining derivatives

• Define binary random variables representing sign of derivatives y'_i and y''_i

$$m(y'_i) = \begin{cases} 1 & \text{if } y'_i > 0\\ 0 & \text{otherwise} \end{cases} \qquad n(y''_i) = \begin{cases} 1 & \text{if } y''_i < 0\\ 0 & \text{otherwise} \end{cases}$$

• Weight probability of sample $p(y^*|y) \sim \mathcal{N}(\mu_*, \Sigma_*) \times m(y') \times n(y'')$ where

$$m(y') = \sum_{i} \left(m(y'_i) = \begin{cases} 1 & \text{if } y'_i > 0\\ 0 & \text{otherwise} \end{cases} \right) \qquad n(y'') = \sum_{i} \left(n(y''_i) = \begin{cases} 1 & \text{if } y''_i < 0\\ 0 & \text{otherwise} \end{cases} \right)$$

Constraining derivatives

How do we compute these?

• Define binary random variables representing sign of derivatives y'_i and y''_i

$$m(y'_i) = \begin{cases} 1 & \text{if } y'_i > 0\\ 0 & \text{otherwise} \end{cases} \qquad n(y''_i) = \begin{cases} 1 & \text{if } y''_i < 0\\ 0 & \text{otherwise} \end{cases}$$

• Weight probability of sample $p(y^*|y) \sim \mathcal{N}(\mu_*, \Sigma_*) \times m(y') \times n(y'')$ where

$$m(y') = \sum_{i} \left(m(y'_i) = \begin{cases} 1 & \text{if } y'_i > 0\\ 0 & \text{otherwise} \end{cases} \right) \qquad n(y'') = \sum_{i} \left(n(y''_i) = \begin{cases} 1 & \text{if } y''_i < 0\\ 0 & \text{otherwise} \end{cases} \right)$$

Computing derivatives

The derivative of a GP is a GP

•
$$y'_i = \frac{dy}{dx}\Big|_{x=x'_i}$$
 and $y''_i = \frac{d^2y}{dx^2}\Big|_{x=x''_i}$ also jointly Gaussian distributed with $\{y, y^*\}$

- Similarly draw derivative values at select x' and x'' points
- Can conveniently compute covariance of derivatives based on information from derivatives of kernel
- Calculate probability of all function behaviour given y

$$p\left(\begin{bmatrix} y^*\\ y'\\ y'' \end{bmatrix} \middle| y\right) = \mathcal{N}(v, \Sigma)$$

• Want the posterior distribution
$$p\left(\begin{bmatrix} y^* \\ y' \\ y'' \end{bmatrix} \middle| y \right) \sim \mathcal{N}(v, \Sigma) \times m(y') \times n(y'')$$

GP method only generates the likelihood

$$p\left(\begin{bmatrix} y^*\\ y'\\ y'' \end{bmatrix} \middle| y\right) = \mathcal{N}(\nu, \Sigma)$$

- Could generate samples (Monte-Carlo) from likelihood and accept/reject based on posterior distribution (inefficient)
- Perform Sequential Monte-Carlo (SMC) by adjusting distribution of samples over small constraint steps (efficient)

Sequential Monte-Carlo (SMC): Part 1

Parameterizing continuous constraints

- Apply constraint as function of new parameters τ_1 and τ_2
- Alter definition of variables representing sign of derivatives

$$m \sim \phi(\tau_1 y')$$
 $n \sim \phi(\tau_2 y'')$

 Construct discrete constraint schedule with small steps of constraint increase (simultaneous or asynchronous constraint application)

Sequential Monte-Carlo (SMC): Part 2

Setting up SMC

- Under constraints, y, y' and y'' are no longer GPs
- Inferences must be made using point-wise sampling, so algorithm is tailored to monotonic/convex function interpolation

SMC inputs

- Sequence of constraint parameters $\{\tau_1, \tau_2\}$
- Proposal distributions for GP parameters l and σ^2
- Particle number N

Sequential Monte-Carlo (SMC): Part 3

SMC algorithm and particle filter

- Draw N samples (particles with $[y^*, y', y'']^T$) from unconstrained GP
- For $\{\tau_1, \tau_2\}$ from 0 to ∞
 - for all particles 1: N
 - \rightarrow propose new l, σ^2 and particles $[y^*, y', y'']_{new}^T$ close to $[y^*, y', y'']^T$
 - \rightarrow accept/reject new particles according to

 $p\left(\begin{bmatrix} y^*\\y'\\y''\end{bmatrix} \middle| y\right) \sim \mathcal{N}(\nu, \Sigma) \times m(y') \times n(y'')$

- resample: assign particle weights based on change under constraints
 - \rightarrow throw away bad particles
 - \rightarrow replace with copies of 'better' particles (weighted by constraints)

Results for ⁴He at extrapolation value $N_{max} = 16$

y'

y"

y*

.

Results for ⁴He at extrapolation value $N_{max} = 16$

Ensemble results for ⁴He at extrapolation value $N_{max} = 16$

y_{16.0}

Conclusions

Summary

- Application of derivative knowledge correctly constraining function space
- Demonstrated viability of extrapolation by constrained GPs

Outlook

- Can we push the extrapolations to much larger N_{max} values?
- Add additional harmonic oscillator basis parameter $\hbar\Omega$ to model

References

1. S. Golchi, D. R. Bingham, H. Chipman, and D. A. Campbell, Monotone emulation of computer experiments, SIAM/ASA J. Uncertain. Quantif., 3 (2015), pp. 370–392.

∂TRIUMF

Thank you Merci

www.triumf.ca

Follow us @TRIUMFLab

Discovery, accelerated

GPs with derivatives

$$p\left(\begin{bmatrix} y^*\\ y'\\ y'' \end{bmatrix} | y\right) = \mathcal{N}(v, \Sigma)$$

$$\Sigma = \begin{bmatrix} C_*, C_1, C_2 \end{bmatrix} C^{-1} y$$

$$\Sigma = \begin{bmatrix} C_{**} & C_{1*} & C_{2*}\\ C_{*1} & C_{11} & C_{12}\\ C_{*2} & C_{21} & C_{22} \end{bmatrix} - [C_*, C_1, C_2] C^{-1} \begin{bmatrix} C_*\\ C_1\\ C_2 \end{bmatrix}$$