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Ab initio nuclear theory and the no-core shell model (NCSM)

= Our goal is to solve the many-body Schrt')dinger equation

H|Wi) = Ei|¥Py) H = ZT +2VU+ Z Vijg + -

1<j I<j<f

= NCSM is an ab initio non-relativistic approach with nucleons as the
degrees of freedom

= nuclear interactions are the only input

= expand in anti-symmetrized products of harmonic oscillator single particle
states (parameters N,,,,, and hA())
N=N_, +1\
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Problem...

= NCSM is a rigorous model

= Computational complexity grows
exponentially with basis truncation
parameter N,

= Calculations should converge as

Nmax =

= Meaningful calculations at very large
N, or for larger nuclear systems
are computationally infeasible
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More problems...

= Functional form of energy
convergence curve with respect to
N, 1S Unknown (near the AS)
variational minimum)

= Ad hoc functions are used to attempt
approximate extrapolations

E =E, + ae FNmax
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More problems...

+— NCSM

= Functional form of energy j: ‘He s NOSM- Exump §
convergence curve with respect to 10} .
Nmax 1S unknown (near the h() =t N'LO (A = 500 MeV)
variational minimum) R =24 :
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= Ad hoc functions are used to attempt : 1O = 20 MeV ;
approximate extrapolations st :

E =E, + ae FNmax

Require use of computational techniques to predict
energy as N4, — ° (want meaningful errors)



Mathematical problem statement

= Given some discrete data sety = {y;} = {y(x;)}, can we determine
the underlying functional form y(x)

= |s it determined well enough to make predictions y* = y(x*)?

304 — ¥x)=log(20x+1)
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Parametric and non-parametric models

Typical extrapolation - Parametric
= Select a functional form with some parameters y(x) ~ f(x,p) + e(x)

= Determine most likely values for parameters p given assumed error
distribution e(x)

E =E, + ae FNmax

Gaussian process - Non-parametric
= Make assumptions on functional behaviour

= Consider conditional probability of predictions given data p(y*|y) to
constrain function space further than a typical GP



Gaussian processes (GPs): Part 1

Overview

= GP Is collection of infinite number of random variables with mean function
m(x) and covariance function r(x, x")

V=0 )T~ N - y=yx) ~Nmk),rlxx"))

= GPs are distributions over function spaces
= provide interpolations with uncertainties

= functional behaviour selected based on covariance of prediction sites and
data points

= can be improved by incorporating derivative constraints

= Extending work of Golchi et al [1], we attempt GP extrapolation by
constraining first and second derivatives



Gaussian processes (GPs): Part 2

Key assumption on the prior

= Points {y; } drawn from multivariate Gaussian distribution (GD) with
covariance function C[y;, y;] defined by kernel choice

oG- (o e e

2 .
(xi—x;) ) — Gaussian kernel

C[yirJ’j] = r(xi,xj) = og’e 212 o

= Assumption of ‘'smoothness’ on space of functions, nearby inputs have
nearby outputs

= |f |Xi — X]| ~ [ then |yl — y]| > oIS unlikely



Gaussian processes (GPs): Part 3

Calculation

= Extending to vectors, y (data) and y* (function at select x™ points) form
joint GD and are drawn with mean j and covariance matrix X

y < c C. CW) = Clyyj| = r(xi, %)
p()=rvan=n(i][+ o) Cf"”=r(xi,x;;} y Cg;i ;zxf,x]’-")

Gaussian ‘trick’
= Can compute probability of function predictions y* given input data

p(y*ly) = N (., Z,)
where

w, =Crc-1ty > =C..—CTc1c,
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Example of sampling

= New points are random samples from a Gaussian distribution
= Points can be sampled sequentially (depending on all the previous)
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Example of sampling

= New points are random samples from a Gaussian distribution
= Points can be sampled simultaneously (from higher-dimensional Gaussian)
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Extrapolation problem
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= While GP interpolates data as a requirement, error bars explode
outside of the data range

= How do we deal with this radical behaviour?




Extrapolation problem

= We know what functional behaviour we need (and don’t want)

= Can we incorporate this information into the GP?
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GPs with derivatives: Part 1

Constraining derivatives

= Define binary random variables representing sign of derivatives y; and y;’

m(y:) {0 otherwise n(i') {0 otherwise

= Weight probability of sample p(y*|y) ~ N (u,, Z,) x m(y") x n(y'") where

N _ ~N_ )1 ify; >0 . my _ J1 ify;’ <0
m(y)—Z(m(y,;)—{O otherwise) ny )—Z(n(yl)—{ )

:, i 0 otherwise



GPs with derivatives: Part 1

How do we

.. . . P o
Constraining{derivatives compute these

= Define binary random variables representing sign of derivatives y; and y;’

m(y:) {0 otherwise n(i') {0 otherwise

= Weight probability of sample p(y*|y) ~ N (u,, Z,) x m(y") x n(y'") where

N _ ~N_ )1 ify; >0 . my _ J1 ify;’ <0
m(y)—Z(m(y,;)—{O otherwise) ny )—Z(n(yl)—{ )

:, i 0 otherwise



GPs with derivatives: Part 2

Computing derivatives
= The derivative of a GP is a GP

2
1

— % _also jointly Gaussian distributed with {y, y*}
X=X

= Similarly draw derivative values at select x' and x'' points

= Can conveniently compute covariance of derivatives based on information
from derivatives of kernel

= Calculate probability of all function behaviour given y
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GPs with derivatives: Part 3
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Obtaining distribution y*]
= Want the posterior distribution p| Y ||y | ~ N, 2) xm(@y") x n(y")
V]
o
= GP method only generates the likelihood p| |Y ||y |= N, X)
v

= Could generate samples (Monte-Carlo) from likelihood and accept/reject
based on posterior distribution (inefficient)

= Perform Sequential Monte-Carlo (SMC) by adjusting distribution of
samples over small constraint steps (efficient)



Sequential Monte-Carlo (SMC): Part 1

Parameterizing continuous constraints
= Apply constraint as function of new parameters t; and 7,
= Alter definition of variables representing sign of derivatives

’ N 107 t-00
m~ ¢(11y') n~ ¢(ry") 08 0.0=T=w
' — T ©
0.6
= Construct discrete constraint ¢
. 0.4 1
schedule with small steps of
constraint increase (simultaneous or 0.2
asynchronous constraint application)
0.0
-2 0
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Sequential Monte-Carlo (SMC): Part 2

Setting up SMC
= Under constraints, y,y’ and y'" are no longer GPs

= Inferences must be made using point-wise sampling, so algorithm is
tailored to monotonic/convex function interpolation

SMC inputs

= Sequence of constraint parameters {t{, 75}

= Proposal distributions for GP parameters [ and o2
= Particle number N

20



Sequential Monte-Carlo (SMC): Part 3
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SMC algorithm and particle filter

= Draw N samples (particles with [y*,y’,y"]") from unconstrained GP

= For {r{,7,} from 0 to o
— for all particles 1: N
— propose new [, 2 and particles [y*,y',y" ]}, close to [y*,y', y"]"
— accept/reject new particles according to

y*
pl |y
yH

— resample: assign particle weights based on change under constraints
— throw away bad particles
— replace with copies of ‘better’ particles (weighted by constraints)

y) ~NW,2) xm(y") xn(y")



Results for “He at extrapolation value N4, = 16
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Results for “He at extrapolation value N,,,,, = 16

GP convexity constraints on binding energy
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Ensemble results for “He at extrapolation value N,,,,,, = 16

Distribution of y* ensemble at extrapolation point
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Conclusions

Summary
= Application of derivative knowledge correctly constraining function space
= Demonstrated viability of extrapolation by constrained GPs

Outlook
= Can we push the extrapolations to much larger N,,,, values?
= Add additional harmonic oscillator basis parameter AQ to model
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GPs with derivatives
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