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Overview

CMS is very active in applying Machine Learning and 
especially Deep Learning to a variety of subjects

• About ~25 dedicated ML contributions on 
conferences in 2019-present (not including physics 
analyses)

• Annual dedicated CMS Machine Learning 
workshops 

• ML is transforming the field and the traditional 
workflows

• New tools and new terminology

Introduction | D. Krücker

CMS activities

Main fields of applications

• Object tagging and object calibration
especially Jets and taus are flagship applications

• Physics analyses

• In addition

• Triggers

• Reconstruction
• Data Quality Monitoring
• Simulation

• Computing work flows



Jet Tagging
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DeepJet
The latest approach on b-quark jet tagging

CMS uses a Particle Flow approach

• Identify each particle by the combined information 
of all sub-detector

• combine to jets (anti-kt)

Jet identification had been one of the first application of 
Deep Learning in HEP

• b-quark jets vs g/u/d/s-jets etc.
• The classical approach looks

for secondary vertices
• There is plenty of information

in the correlation between
the individual tracks 
and vertices and 
global event
characteristics
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Evolution of CMS b-tagging

• 2015 handcrafted CSVv2(nn) and cMVAv2(BDT)

• Mainly the same information

• 2017 deepCSV

• mid 2017 deepJet (DeepFlavour)

• The gain is due to the usage of all available particle 
information in a deep network  

Introduction | D. Krücker

A short history (for more details M. Verzetti ML4Jets WS 2018)

CMS DP-2017/013

deepCSV

deepJet

see next page

https://indico.cern.ch/event/745718/contributions/3146638/attachments/1753044/2841151/ML4Jets2018.pdf
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• Complex machinery
• Steady development

over the last 3y
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Training DeepJet

Introduction | D. Krücker

Big data

• Training needs large amount of data • Different weight initialization
• Training is stable and reproducible
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Scale factors

• Training on MC

• Performance on data
Scale Factors (SF) that describes 
the difference between simulation
and data

• Good performance on data but
smaller efficiency

Introduction | D. Krücker

Back to earth
CMS DP-2018/058
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Top etc. tagging

• A top decays into a b quark and a W ⟶ lep,had

• If the momentum is large the form a common jet

• Boosted topology in fat jets (AK8)

• Top-tagging ⟺ identify such jets

Short Overview | D. Krücker

Highly-boosted top quarks  

DeepAK8
• Up to 100 particles
• Each particle comes with 42 features
• 14 layers is indeed deep
• Up to 7 SV with 7 features
• Trained with 50 million jets
• Residual net (short cuts between layers)

Typical problem how to 
handle a varying number 
of particles, here: 1d CNN

H
, Top, W

, Z, or Q
C

D

CMS publication will appear soon
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Convolution allows to handle a varying number of particle within a jet
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How to feed in a changing number of objects

Many Deep Learning approaches have been 
developed for imaging, i.e. dense regular grid of points; 
or text processing, i.e. sequences

• Not straightforward how to connect to typical HEP 
problems

• Jet images in (𝜂, 𝜙) plane are sparse

• Varying number of particles in cone from jet to jet

• Standard solution so far

• Recurrent nets: pT ordered particles
• Convolution: particles as 1d string of inputs

• New approach: Geometric learning or

• Graph networks
(Hot subject on this year NIPS dozens of papers)

Introduction | D. Krücker

A common subject

• H. Qu and L. Gouskos. 
„ParticleNet: Jet Tagging via Particle Clouds“
https://arxiv.org/abs/1902.08570

• Bsed on Y. Wang et al.
„Dynamic Graph CNN for Learning on Point Clouds“

• M. Fey and J.E. Lenssen. 
„Fast Graph Representation Learning with
PyTorch Geometric“
https://github.com/rusty1s/pytorch_geometric

https://arxiv.org/abs/1902.08570
https://github.com/rusty1s/pytorch_geometric
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EdgeConv network

Introduction | D. Krücker

Particle Cloud

• Compute k-nn Graph

• Defines a local neighborhood on which
a convolution operation work

• For the first layer this is the (Δ𝜂, Δ𝜙,pT) plane wrt. jet 
axis 

• Apply EdgeConv, here

• Dynamic Graph CNN 
means the recalculation
of the k-nn in the 𝑥( space
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EdgeConv network

Introduction | D. Krücker

Thanks to Leonid Didukh
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Tau-lepton tagging

• CMS investigates deep NN for tau-lepton 
identification

• Similar complexity as the shown b tagger

• We started to investigate a Graph Network 
approach

• Promising results similar performance with a model 
that contains 10 times less parameters

• Time advantage in interference

Introduction | D. Krücker

A newly started project with Graph Networks – no official CMS results yet

~20k parameters ~50k parameters



Searches

Introduction | D. Krücker
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Searches

Two example analyses (there are many more using ML) 

• Supersymmetry

• Higgs 

Introduction | D. Krücker

Examples for ML methods in searches

Please note!

• These are ongoing analyses

• Results are not approved

• Therefore no numbers, no data plots
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Ex.1: Search for supersymmetry in events with one lepton

Introduction | D. Krücker

Search for supersymmetry in events with one lepton and multiple jets exploiting the angular correlation 
between the lepton and the missing transverse momentum in proton-proton collisions at √s = 13 TeV

• SUSY signal: T1tttt
2 gluinos that decay
to 4 top quarks 
+ 2 neutralinos

• Important SM background
top-anti-top pair (ttbar) with
2 leptons where
one lepton is missed in the reconstruction

published Run II result on 2016 data
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SUSY deltaPhi

Introduction | D. Krücker

Previous approach

• Can we do better with a neural network?

• Sure but

• How to connect the NN response to the observed 
data to estimate the background in the signal 
region?

Estimate the background
in the high dPhi region by looking
into the low dPhi region at different jet multiplicities
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regularisation
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Multiclassification 

• 4 classes

• 3 class represent different backgrounds

• 1 class is the search region
• The simulation is normalized to the data in the 

background classes by solving the equation system

• Creates a nice data/MC agreement -> estimate 
Background in signal region
(not shown here)

• Independent of the signal point

Some results ... | D. Krücker

Data augmented background estimation
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How to know what is relevant?

• Complex neural nets do not tell us how they come 
to a decision

• 10th thousands of parameters
• Several dozens of input variables

• Important to understand what is driving the decision

• If the network is just a chain of matrix multiplication and 
function mappings why not just do a Taylor expansion

• arXiv:1512.02479

Short Overview | D. Krücker

Opening the neural net black box in a Higgs search

• Higgs ⟶ 𝜏 𝜏

• Observation published last year 
(CMS) Phys. Lett. B 779 (2018) 283 

• New study with a multiclass NN ongoing

Deep Taylor Decomposition
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production 
modes

cross section

2 hidden layer with 200 nodes each
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Size of the
Taylor coefficients

as sensitivity metric
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Machine Learning Research
for HEP

Some results ... | D. Krücker
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Learning for Discovery - The Asimov Loss

Some results ... | D. Krücker

Setting the stage

How to optimize for a search?

• We are looking for the best search bin 

• Background by some sideband measurement
with systematic uncertainty

• s and b with systematic uncert.
σb= esys b

• The best statistical answer to this problem:
Asymptotic formulae for likelihood-based 
tests of new physics by CCGV
arXiv:1007.1727 [physics.data-an]

• 1 bin Poisson „expected“ discovery significance
we call this: „Asimov“ significance

multi dim. feature space

. . . . .

1 dim output

binary
Classifier



Page 27

Learning for Discovery

• Asimov significance looks lengthy

• but simplifies without σb to

• and in the limit of small, i.e.  s, σb << b, to the more common

• Here we go for small b and therefore use the full expression above which 
performs well for even a few events

• NB: ZA does not scale with Luminosity L

Some results ... | D. Krücker

Asimov expected discovery significance
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Learning for Discovery

• Neural networks for binary classification are 
typically trained with cross-entropy

• Cross-entropy requires the network to model the 
true label distribution

• It optimizes accuracy: Acc = -./0123./01
455

• In searches we are not interested in high accuracy, 
i.e. correct labelling of all background and signal 
event but

• We are looking for a phase space region with 
high signal purity for 
optimal discovery significance 

Some results ... | D. Krücker

Cross-entropy and Asimov significance  

predicted labeltrue label

binary cross-entropy
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Learning for Discovery

• When optimizing a classifier a typical approach is to 

optimize the accuracy: Acc = -./0123./01
455

• For neural networks standard approach for training 
a binary classifier is the cross-entropy

• Accuracy maximizing is equivalent to minimizing 
the cross-entropy:

Some results ... | D. Krücker

Cross-entropy and Asimov significance  

• Can we optimize directly for the Asimov 
significance, i.e. can we use it as a 
loss function ?
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Learning for Discovery

• When optimizing a classifier a typical approach is to 

optimize the accuracy: Acc = -./0123./01
455

• For neural networks standard approach for training 
a binary classifier is the cross-entropy

• Accuracy maximizing is equivalent to minimizing 
the cross-entropy:

Some results ... | D. Krücker

Cross-entropy and Asimov significance  

• Can we optimize directly for the Asimov 
significance, i.e. can we use it as a 
loss function ?

The sum is now inside
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Learning for Discovery

• When optimizing a classifier a typical approach is to 

optimize the accuracy: Acc = -./0123./01
455

• For neural networks standard approach for training 
a binary classifier is the cross-entropy

• Accuracy maximizing is equivalent to minimizing 
the cross-entropy:

Some results ... | D. Krücker

Cross-entropy and Asimov significance  

• Can we optimize directly for the Asimov 
significance, i.e. can we use it as a 
loss function ?

• Caveat: To define the number of signal and 
background events we need to cut on the 
discriminator output

• Makes it non-differentiable ??
• Differentiability is needed for gradient descent learning
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Learning for Discovery - Main Idea

• A single sigmoid output neuron

• Replace the discrete number of signal and background 
events by a smooth function of the predicted label 
𝑦7
8/19 ∈ [0,1]

Some results ... | D. Krücker

Asimov significance  as loss function 𝑦7
8/19

𝑊-,𝑊3 some weights to get the physical
number of events depending on luminosity
and efficiency to get the

1/𝒁𝑨(𝒔, 𝒃) becomes a smooth 
function of 𝒚𝒊

𝒑𝒓𝒆𝒅
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Learning for Discovery – applied to a toy SUSY search

Some results ... | D. Krücker

Asimov Loss function and Classifier Output  - arXiv:1806.00322 [hep-ex]

Asimov loss training

• best ZA = 6.2 ± 0.6

• Acc = 59%

• AUC=0.80 

• Tries to find a background 
free region

Cross-entropy training 
+ purity cut

• best ZA = 4.8 ± 0.3

• Acc = 92%

• AUC=0.87 

Asimov score vs. cut on classifier

Systematic uncertainty 50%,
Differences in ZA shrink for
small systematic uncert. compressed model point

https://arxiv.org/pdf/1806.00322.pdf


Computing

Some results ... | D. Krücker
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CMS Workflow Failures Recovery Panel Towards AI-assisted Operation

Motivation

• CMS central production system

• ~200K grid cores, ~hundred sites

• thousands of work flows with thousands of jobs

• Failures are unavoidable

• Manual operator intervention

• Can we have an automated system that give 
advice how to recover a job?

• Train a Deep Neural Network

Trainings data (15,000 workflow tasks)

• Logs (json files) pulled from Workflow Team Web Tools 
which extracts information from Site-Readiness report

• Job failure codes and site information
• Operator actions 

Some results ... | D. Krücker

Christian Contreras et al. CHEP 2018

• ACDC (rerun failed)
• splitted

• Clone (total retry)
• splitted



Page 36

CMS Workflow Failures Recovery Panel Towards AI-assisted Operation

Some results ... | D. Krücker

Christian Contreras et al. CHEP 2018

Difficulties to handle

• Input preprocessing

• Getting the data, how to handle missing data

• Unbalanced data

• E.g. some failure codes are rare
• SMOTE Synthetic Minority Over-Sampling

by interpolation for minority classes

• Multiclass Training

• 2 stage classifier 

• Binary + multi-class

Model hyper-parameter tuning by Gaussian Processes
(skopt)

• Eg. number of layers, numer of neurons, ..

7978 input features

3 hidden layers 

SMOTE
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CMS Workflow Failures Recovery Panel Towards AI-assisted Operation

Some results ... | D. Krücker

Christian Contreras et al. CHEP 2018

• A first pass for the supervised learning in error 
handling prediction. The operator’s procedure will 
be automatized further by applying the decisions 
that are predicted with acceptable confidence. 

• Improve current WTC web interface 

• To start using Machine Learning Model 

• Include the prediction for recommended action  
Start recovery from trivial cases

• Monitor performance for model re-training 
• Add GUI display for diagnostic summary reports 

15-fold cross validation on ROC
(small sample size)

binary stage

Confusion matrix
for the multi-class stage
70/30% split for train/test
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Collecting data routinely

• Operator decisions are 
“Noisy labels”

• Collecting available data

• Databases
• Log files 

• Model prediction as 
additional information
to support the operator

Introduction | D. Krücker

Ongoing work to implement the tools in the daily workflow for further development



Education

Introduction | D. Krücker
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Education

Schools on Machine Learning within the 
Terascale Alliance and beyond

• 5th Machine Learning in High Energy
Physics in cooperation with the
Yandex Data Science School, 
June 2019

• 10 days of lab courses in Wuhan/China, 
INFIERI summer school, 
May 2019

• 1st Terascale School on Machine Learning, 
October 2018

Introduction | D. Krücker

DESY provides education in the field of Machine Learning  
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NEURALA NÄTVERK

KERAS

Features

b Normalize

Testa Train

Assembly Instruction

OvertrainingMetric

Loss

a

c
b Optimizer

Topology

Fit

Apply!

http://yandexdataschool.com/


Summary

Many CMS ML activities in different areas

Introduction | D. Krücker


