Applications of Machine Learning in Accelerator Operation

S. Tomin and I. Agapov

TRIUMF-Helmholtz Workshop on Scientific Computing

HAMBURG, GERMANY 16 September 2019

Automation, optimization and simulation for accelerator facilities

S. Tomin and I. Agapov

TRIUMF-Helmholtz Workshop on Scientific Computing

HAMBURG, GERMANY 16 September 2019

DESY accelerators highlights

ACCELERATORS

DESY develops, constructs and operates accelerators to boost particles up to top speed

FLASH and European XFEL (operation since 2017) World-leading Free Electron Lasers providing high-intensity coherent x-ray radiation

PETRA III is currently the most brilliant hard X-Ray synchrotron source worldwide

Providing the beams to the majority of DESY photon science users

https://accelerators.desy.de

Accelerator ARD such as plasma acceleration Technology development for future accelerators

RESEARCH FOR GRAND CHALLENGES

PETRA IV project to upgrade PETRA to the diffraction-limited source

PETRA IV

.

Design parameter	PETI	RA III	PETRA IV
Energy / GeV	6		6
Circumference / m	2304		2304
Emittance (horz. / vert.) / pm rad	1300 / 10		< 20 / 4 < 50 / 10
Total current / mA	100		200 ¹ 80 ²
Number of bunches	960	40	1600 [*] 80
Bunch population / 10^{10}	0.5	12	0.6 4.8
Bunch current / mA	0.1	2.5	0.125 1.0
Bunch separation / ns	8	192	4 / 20 (gaps) 96

5

Challenges of 4G light source design

- Many tradeoffs to be made (vacuum chamber sizes, magnet strength, etc...) to stay technically feasible
- Nonlinear dynamics dominating (many options have close to 0 MA and DA)
- IBS and Touschek effects very prominent, need to operate with a lengthening cavity and round beams in high-intensity modes
 - More demanding injection, extraction, and beam dumps

6

Challenges of 4G light source commissioning

- Users demand 1 max 2 years dark time, tight schedule
- Machine extremely sensitive to errors, ~30 µm alignment required
- Involved (automated) startup procedures required to store beam and reach target emittance

Dynamic aperture after simulated startup procedure for PETRA IV

Uncorrected machine is typically unstable

Challenges of 4G light source operation

- Reliability demands grow (95% -> 99%)
- But machines are more sensitive with larger number of components
- We would like to meet availability goals and provide required beam-hours to users
- But at the same time we would like to keep doing accelerator physics and spend dedicated machine time on studies rather than machine setup
- This could only be successful if all standard procedures are highly automated
 Startup of components (magnet cycling etc.)
 - Orbit correction
 - BBA
 - Optics measurement and correction

Methods are well understood but (high-level) controls software not designed for autonomous operation

8

Big data and operational statistics

A typical activity is to figure out what correlates to what through archive mining and try to improve things

Problems:

Lengthy manual processing required to arrive at a meaningful dataset

Amount and quality of data after processing could be surprisingly low in comparison to the raw data

Typical pull from archive All temperature sensors, Aug 22-Nov30 2018 Fraction of channel data missing (25%) Unmatched timestamps Data archived on thresholds Bad readings/datapoints

ML and beam dynamics

Although single-particle beam dynamics well developed, several directions still considered art, such as:
 Multi-parameter matching in high dimensions (e.g. MBA. cell design)
 Nonlinear aberrations (beyond simple ideas like low-order achromats, reducing sextuple strength, -I)

A common line of reasoning — build fast "surrogate models" based on NN trained on simulated data

Script uses

module

OCELOT python

Sanity check — FODO

In [2]: # try to learn FODO stability

```
import os,sys
from ocelot import *
from pylab import *
QF = Quadrupole(1=0.1, k1=0.1)
QD = Quadrupole(1=0.1, k1=-0.14)
D = Drift(1=1.0)
fodo = (QF,D,QD,QD,D,QF)
lat = MagneticLattice(fodo)
```

import keras

from keras.models import Sequential
from keras.layers import Input, Dense, Dropout
from keras.utils import to_categorical
from pylab import *

#fixing a duplicate openmp dylib on mac??? import os

os.environ['KMP_DUPLICATE_LIB_OK']='True'

```
model = Sequential()
model.add(Dense(64, input_dim=3, activation='relu'))
#model.add(Dropout(0.5))
model.add(Dropout(0.5))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='sgd',metrics=['accuracy'])
model.fit(x_train,y_train, epochs=30, batch_size=16)
```

Using TensorFlow backend.

Epoch 1/30 10000/10000 [======] - 2s 211us/step - loss: 0.3254 - acc: 0.9241 Epoch 2/30 10000/10000 [======] - 2s 153us/step - loss: 0.2748 - acc: 0.9313 Epoch 3/30 10000/10000 [=====] - 2s 152us/step - loss: 0.2614 - acc: 0.9313

```
n_train = 10000
```

```
x_train = np.zeros([n_train,3])
y_train = np.zeros([n_train,1])
```

HELMHOLTZ

RESEARCH FOR GRAND CHALLENGES

```
for i in range(n_train):
    QF.k1 = np.random.rand()
    QD.k1 = -np.random.rand()
    D.1 = 2.0 * np.random.rand()
```

```
x_train[i,0] = QF.k1
x_train[i,1] = QD.k1
x_train[i,2] = D.1
lat.update_transfer_maps()
tws = twiss(lat, Twiss())
if tws is None:
    y_train[i,0] = 0
else:
    y train[i,0] = 1
```

```
n_test = 5000
x_test = np.zeros([n_test,2])
y_test = np.zeros([n_test,1])
D.1 = 3.9
for i in range(n_test):
    QF.k1 = 5*np.random.rand()
    QD.k1 = -5*np.random.rand()
    x_test[i,0] = QF.k1
    x_test[i,1] = QD.k1
    lat.update_transfer_maps()
    tws = twiss(lat, Twiss())
    if tws is None:
        y_test[i,0] = 0
```

y test[i,0] = 1

else:

```
10
```

Sanity check — FODO

Stability diagram check on the test set QF in [0,5] QD in [-5,0] L=3.9

The trained NN generalizes surprisingly well beyond training set parameters!

However only within a certain range, and validity range needs checks

Practical application not clear

Training set was QF in [0,1] QD in [-1,0] L in [0,2]

12

Summary computing and ML for storage rings

- Design of next generation of storage rings is challenging and requires significant computing power to evaluate performance parameters
- GPU computing has potential to speed up storage ring beam dynamics calculations by several orders of magnitude, open ways to more advanced optimisation and speed-up the optics design process. Unfortunately, 4th generation light source projects (such as ESRF EBS, APS-U, PETRA IV) are all in late project phases to benefit from any breakthroughs here
 - We don't see much potential of ML for accelerator design or beam dynamics studies
- With increasing complexity and sensitivity (to temperature, ground motion etc.) of next-generation storage rings, we see potential of ML techniques such as reinforcement learning in the area of control and automation

Proper facility monitoring and technical data curation remains a major challenge

RESEARCH FOR GRAND CHALLENGES

HELMHOLTZ

European XFEL

The European XFEL Accelerator Overview

Electron bunches in a single pulse are distributed by a fast kicker system to three SASE undulators

W. Decking et al, "Commissioning of the European XFEL", https://doi.org/10.18429/JACoW-IPAC2017-MOXAA1

The European XFEL challenges

S2E simulation

Understanding the properties of the electron and photon beams.

- Collective effects play an important role in the electron beam dynamics and in many cases define the electron beam properties, e.g. energy chirp, emittances, slice energy spread
- Crucial for the operation, e.g. defining compression scenario
- Studies of new FEL schemes (beam dynamics + FEL), e.g. two color with corrugated structure.
 - But S2E simulations are time consuming, typically needs complicated software setup
- Optimization of accelerator performance
 - FEL performance is highly sensitive to hundreds of free tuning parameters, e.g. the beam orbit and optics, RF settings, undulator gaps etc,

OCELOT

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

European XFEL

OCELOT toolkit overview

- Started as simulation project (spontaneous radiation, FEL) at European XFEL. I. Agapov et al., NIM A. 768 2014
- Beam dynamics module was developed (linear optics, collective effects, second order effects, optim. techniques).
 - S. Tomin et al. doi.org/10.18429/JACoW-IPAC2017-WEPAB031
- FEL applications. S. Serkez et al, Journal of Optics, Volume 20, Number 2, 024005, 2018
- Turned into more on-line control-oriented development
 - Optimizer, orbit correction tool, adaptive feedback
 - ► arXiv:1704.02335, S. Tomin et al., doi:10.18429/JACoW-ICALEPCS2017-WEAPL07
- Everything in **Python**. Focus on simplicity. Implement only physics
- Open source (On GitHub https://github.com/ocelot-collab/ocelot)

S2E simulation. OCELOT multiphysics simulation toolkit. Motivation

HELMHOLTZ

RESEARCH FOR GRAND CHALLENGES

European XFEL (DESY.

Automation, optimization and simulation. S. Tomin and I. Agapov, Hamburg, Germany, 16.09.2019

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES European XFEL

17

Beam dynamics for 500 pC, 5 kA

M Dohlus, S.Tomin and I. Zagorodnov, "Shaping the Future of the European XFEL: Options for the SASE4/5 Tunnels", December 6, 2018

OCELOT toolkit: S2E in control room (beta version)

- Reading quads and cavities settings and measured betafunctions
- Tracking 200000 particles with CSR, SC, wakes through all machine up to undulator section
- Total time calculation 20 mins
- FEL power Estimator (Ming Xie parametrization). 0.4 mJ
- In reality, we had 1 mJ with nonlinear undulator tapering
- Genesis can be used, as well

Beam slice parameters

ALLENGES

European XFEL

FEL power estimation with Ming Xie

Optimization of accelerator performance

- Modern Free Electron Lasers are complex facilities with hundreds of free tuning parameters Bunch compression, orbit, beam optics, gun optimization, undulator gaps, phase-shifters, etc.
- Even when the main accelerator systems work well, manual fine-tuning is necessary to get the best performance and this is time expensive
- More automation of the tuning procedures is needed

Optimization of accelerator performance. Optimization algorithm

- Optimization algorithms are faster than scanning
- Optimization methods can be model-independent or model-dependent

HELMHOLTZ

RESEARCH FOR GRAND CHALLENGES

21

OCELOT Optimizer

- Optimization algorithms are faster than scanning
- OCELOT optimizer is a flexible platform for optimization:
 - Interchangeable optimization methodsGUI
 - Add/select device or group of devices
 - Craft/modify target function
 - Infrastructure for testing new methods
 - Save/load configs
 - Logging
 - Collaboration DESY, EuXFEL, SLAC
- I. Agapov et al, arXiv:1704.02335
- S. Tomin et al, https://doi.org/10.18429/JACoW-IPAC2017-WEPAB031
- M.W. McIntire et al, DOI:10.18429/JACoW-IPAC2016-WEPOW055

		1	Ocelot Interface							
	Optimization Scan	Panel Scan Setup Pa	anel Objective Function	Data	Browser	Simulation Mod	le			
PVs 1 sim device 1	Saved Val. Current V				1 —		Objective Fun	ction Monitor		
2 sim device 2	0.0 0.0	-5.000				statistics				
3 sim_device_3	0.0 0.0	-5.000 05	.000		0.8					
4 sim_device_4	0.0 0.0	-5.000 🗘 5	.000							
				j	0.6					
				st_ob						
				te	0.4					
					0.2					
					00	0.2	0.4	0.6	0.8	1
							Time (se	conds)		
				_						
					1		Device Monitor			
					'_					
					0.8					
				art)						
				t - Sta	0.6					
				urren						
				ce (C	0.4					
Middle click a PV then the table to add your favorite de	vice!			Devi						
Update reference Rese		Check			0.2					
Add Devices	From List: All									
	Manually				0	0.2	0.4	0.6	0.8	1
Clear Devices							Time (se	conds)		
Start optimization Logbook						Help/Docs				

Use cases

FEL facilities

- FEL pulse energy maximization:
 - ► Launch orbit and orbit inside an undulator (EuXFEL)
 - Phase-shifters (EuXFEL)
 - Orbit in low energy sections (EuXFEL)
 - Matching quads (LCLS & EuXFEL)
 - ► RF settings (EuXFEL)
 - Local dispersion correction (EuXFEL & FLASH)
 - HOM signal minimization in cavities (FLASH)

Storage rings:

- Injection efficiency optimization (Kurchatov Institute)
- Beam life time (test at BESSY-II)
- SPEAR3 (SLAC)

Ocelot optimizer stats

SLAC: Ocelot with Nelder-Mead simplex reduced tuning times on average by 25% to 50% compared to hand tuning

The European XFEL

OCELOT Optimizer: Use cases

- European XFEL
 - FEL pulse energy maximization:
 - ► Orbit inside an undulator
 - ► Phase-shifters
 - ► Orbit in injector
 - Matching quads
 - ► RF settings

Phase-shifters

OCELOT Optimizer: Use cases

European XFEL

- FEL pulse energy maximization:
 - ► Orbit inside an undulator
 - Phase-shifters
 - ► Orbit in injector
 - Matching quads
 - ► RF settings
 - Local dispersion correction in injector

Before correction

HELMHOLTZ

RESEARCH FOR GRAND CHALLENGES

After correction

DESY.

Sequence of optimizations: automatic optimization

Optimization with small number of actuators (4-6) is more efficient than with many due to noise and slow drifts

New version (v1.1) was deployed

RESEARCH FOR GRAND CHALLENGES

- Predefined sequence of optimization
 without operator intervention
 - Optimizer monitors machine state paused optimization if necessary.

Sequence of optimizations: automatic optimization

Optimization with small number of actuators (4-6) is more efficient than with many due to noise and slow drifts

New version (v1.1) was deployed

RESEARCH FOR GRAND CHALLENGES

- Predefined sequence of optimization
 without operator intervention
 - Optimizer monitors machine state paused optimization if necessary.

Model-dependent optimizations

Model-dependent optimizations use/construct a regression model which can predict result.
 Mathematical/physical accelerator model
 Model based on data analysis (statistic, ML)

Compression scenarios optimization

Adaptive orbit feedback

Charged Particle Beam Dynamics (CPBD) module (linacs, rings)

Online beam control

- Orbit correction
- Adaptive FB
- Optimizer

Bunch compression optimization

Working point (11 parameters of longitudinal beam dynamics)

FOR GRAND CHALLENGES

- Optimizing working point
 - Theoretical analysis (+ simulations)
 - measurement
 - tuning against the FEL performance

Model-independent and ML methods for control of longitudinal beam dynamics

HELMHOLTZ

RESEARCH FOR GRAND CHALLENGES

PHYSICAL REVIEW LETTERS 121, 044801 (2018)

Demonstration of Model-Independent Control of the Longitudinal Phase Space of Electron Beams in the Linac-Coherent Light Source with Femtosecond Resolution

Alexander Scheinker,^{1,*} Auralee Edelen,² Dorian Bohler,² Claudio Emma,² and Alberto Lutman² ¹Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA ²SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA

ELMHOLTZ EARCH FOR GRAND CHALLENGES

SEARCH FOR GRAND CHALLENGES European XFEL

Adaptive Feedback

- The "Adaptive Feedback" is a statistical optimizer exploiting the orbit jitter and its correlation with a fast FEL intensity signal (shot-to-shot resolution) to optimize the undulator launch orbit
- Correcting the orbit to zero BPM positions does not always mean a straight line for lasing slice

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

European XFEL

Adaptive Feedback

Logbook entry: /XFELelog/data/2019/12/23.03_M 23.03.2019 08:06 XFEL mscholz, TIS, Artem XFEL_xgmd_sase_viewer.xml SASE1 signal could be doubles with only starting the adaptive FB SASE VIEWER SASE1 UPSTREAM (2643.T9) ALL SA1 SA3 XGM ok? 11.829 keV 1.05 Å flux ok? XFEL FEL Energy per Pulse 1002.7 µJ **Total FEL Output Power** [µJ] [W] 1.6 W 1.8 - XGM.2643.TS/PHOTONFLUX.W [W] : Mean=0.7680, SD=0.156 1.4 1000 1.0 0.6 900 Adaptive FB 0.2 800 -0.2 7:17 23.3.2019 7:32 23.3.2019 7:47 23.3.2019 8:12 23.3.2019 was started 700 [bunches] survey from and the parenter manufacture and the bunc... 600 160 120 500 80.0 40.0 7:17 23.3.2019 7:57 23.3.2019 7:59 23.3.2019 7:32 23.3.2019 7:47 23.3.2019 8:01 23.3.2019 8:03 23.3.2019 8:05 23.3.2019 8:08 23.3.2019 8:12 23.3.2019 Intra-Train Pulse Energy 2500 2000 1750 1500 1250 1000 50 25 130.0 10.0 20.0 40.0 60.0 70.0 110.0 160.0

Adaptive Feedback statistics

- Adaptive Feedback has become one of the main tools for SASE tuning
- In some cases the adaptive feedback is used as an orbit feedback
- The soft X-Ray FEL pulse energy signal is not sensitive to the orbit jitter in the SASE3 undulator.
 - artificially induced orbit changes have to be used to catch correlations

Active search?

GRAND CHALLENGES

XFEL simulations and optimizations. Summary

- OCELOT is part of DESY/EuXFEL toolkit for beam dynamics and FEL simulations
- Model-free optimization methods were widely used during commissioning of the European XFEL and now it is a part of the daily European XFEL operation
- We can apply more automation such as a sequence of optimization without operator intervention. In the future, ML methods will be used to define the sequence
- A model-based method such as the Adaptive orbit feedback proves extremely useful and more advantageous compared to purely empirical methods.

Applications of Machine Learning in MSK

Real-time control of photon parameters

- Train neural network at the to control of photon parameter, e.g., pulse energy, center wavelength, pointing stability, pulse duration and energy chirp
- System-on-the-chip implementation on the existing hardware architecture

- Hybrid anomaly detection based on a model-based nonlinear parity space approach followed by a classification step using support vector machines
- Factor graph approach to stochastic model-based fault diagnosis: residual generation by a Kalman filter, residual classification by a Gaussian mixture model
- \rightarrow Next steps:
 - \rightarrow Online implementation of developed algorithms
 - → Model extension to further influencing subsystems (synchronization system, cryogenics, vacuum, klystron)

Predictive maintenance for the laser-based synchronization system:

- Health- and performance monitoring of components
- Fault detection and identification for predictive maintenance
- → First steps:
 - → Data Mining: selection of appropriate data channels (long-time archiving), dimensionality reduction, analysis

Plasma accelerator simulations: Accurate and efficient simulations codes

HiPACE

a Highly efficient plasma accelerator emulation

3D quasi-static Particle-In-Cell code

- Allows ~100x speedup for highly-relativistic beams.
- Dynamic time-step adjustment.

Spectral electromagnetic solver

- High performance FFT-solver.
- No numerical Cherenkov radiation.

Highly parallel & written in C

- Fully parallelized and well scalable.
- Suitable for high-performance CPU clusters.
- Interfaces with other PIC and particle tracking codes.

FBPIC

Open source electromagnetic Particle-In-Cell code

Quasi-3D geometry

• 3D accuracy at 2D costs.

Spectral electromagnetic solver

- Highest precision
- No numerical artifacts

Boosted frame

- Accelerate simulations by orders of magnitude
- Instability-free solver

Highly parallel & written in Python

- CUDA GPU acceleration
- Multi-GPU domain decomposition

Courtesy of Alberto M. de la Ossa

Automation, optimization and simulation. S. Tomin and I. Agapov, Hamburg, Germany, 16.09.2019

thank you for your attention!