
Device Error Handling in ChimeraTK•

Martin Killenberg

5th December 2019

8th MicroTCA Workshop for Industry and Research
DESY, Hamburg

M. Killenberg (DESY) Device Error Handling in ChimeraTK 1



Device errors in control applications

Start a server without the hardware

No error handling (bad)
just crashes, don’t know why

Typical error handling (OK)
Tells user it can’t reach hardware
Quits

Ideal error handling (Good)
Server starts
Reports device error to the control system
Normal operation once device is available

Device error while server is running

No error handling (bad)
just crashes, don’t know why

Typical error handling (tedious)
Catch errors wherever you access
the hardware
Take appropriate action

Ideal error handling
???

We have noticed that...

a large fraction of code in control applications is error handling
error handling strategy is usually the same

Report error to control system
Wait until error has gone
Resume operation

⇒ Lots of concepts and code copied (even inside one application)!

M. Killenberg (DESY) Device Error Handling in ChimeraTK 2



Device errors in control applications

Start a server without the hardware

No error handling (bad)
just crashes, don’t know why

Typical error handling (OK)
Tells user it can’t reach hardware
Quits

Ideal error handling (Good)
Server starts
Reports device error to the control system
Normal operation once device is available

Device error while server is running

No error handling (bad)
just crashes, don’t know why

Typical error handling (tedious)
Catch errors wherever you access
the hardware
Take appropriate action

Ideal error handling
???

We have noticed that...

a large fraction of code in control applications is error handling
error handling strategy is usually the same

Report error to control system
Wait until error has gone
Resume operation

⇒ Lots of concepts and code copied (even inside one application)!

M. Killenberg (DESY) Device Error Handling in ChimeraTK 2



Device errors in control applications

Start a server without the hardware

No error handling (bad)
just crashes, don’t know why

Typical error handling (OK)
Tells user it can’t reach hardware
Quits

Ideal error handling (Good)
Server starts
Reports device error to the control system
Normal operation once device is available

Device error while server is running

No error handling (bad)
just crashes, don’t know why

Typical error handling (tedious)
Catch errors wherever you access
the hardware
Take appropriate action

Ideal error handling
???

We have noticed that...

a large fraction of code in control applications is error handling
error handling strategy is usually the same

Report error to control system
Wait until error has gone
Resume operation

⇒ Lots of concepts and code copied (even inside one application)!

M. Killenberg (DESY) Device Error Handling in ChimeraTK 2



ChimeraTK ApplicationCore

Modules

Input/output variables

Application Modules
One thread per module

Special modules
Device module
Control system module

Connections

Mostly auto-generated

High locality

Algorithms don’t need to know how
variables are connected

Perfect modularity, as modules are
self-contained

M. Killenberg (DESY) Device Error Handling in ChimeraTK 3



ChimeraTK ApplicationCore

Modules

Input/output variables

Application Modules
One thread per module

Special modules
Device module
Control system module

Connections

Mostly auto-generated

High locality

Algorithms don’t need to know how
variables are connected

Perfect modularity, as modules are
self-contained

M. Killenberg (DESY) Device Error Handling in ChimeraTK 3



ChimeraTK ApplicationCore

Modules

Input/output variables

Application Modules
One thread per module

Special modules
Device module
Control system module

Connections

Mostly auto-generated

High locality

Algorithms don’t need to know how
variables are connected

Perfect modularity, as modules are
self-contained

M. Killenberg (DESY) Device Error Handling in ChimeraTK 3



Code of a module

void Controller::mainLoop() {

while(true) {
temperatureReadback.read(); // waits until temperatureReadback has been updated
temperatureSetpoint.read(); // update the temperature setpoint

heatingCurrent = gain * (temperatureSetpoint - temparatureReadback);

heatingCurrent.write();
}
}
};

real code from a live demo
Process variables are represented by inputs and outputs

They behave like normal numbers with additional read() and write()

How does this help with device error handling?

M. Killenberg (DESY) Device Error Handling in ChimeraTK 4



Code of a module

void Controller::mainLoop() {

while(true) {
temperatureReadback.read(); // waits until temperatureReadback has been updated
temperatureSetpoint.read(); // update the temperature setpoint

heatingCurrent = gain * (temperatureSetpoint - temparatureReadback);

heatingCurrent.write();
}
}
};

real code from a live demo
Process variables are represented by inputs and outputs

They behave like normal numbers with additional read() and write()

How does this help with device error handling?

M. Killenberg (DESY) Device Error Handling in ChimeraTK 4



ProcessVariable::read()

temperatureReadback.read(); // waits until temperatureReadback has been updated
temperatureSetpoint.read(); // update the temperature setpoint

Each process variable has an error handling loop

Reading from the device backend can cause a
runtime error

An error message is send

Process variable waits for recovery message

ProcessVariable::read()

wait for recovery

report error

read request

backend.read()

send value

runtime_errorOK

recovery message

error message

M. Killenberg (DESY) Device Error Handling in ChimeraTK 5



Device module thread

Device module thread

Open the device backend at application start

Run initialisation sequence

Wait for error messages

Send error message to control system

Try to re-open the device backend
(inner loop)

Try to re-initialise the device

Send OK to control system when successful

Send recovery message to all process variables

Device module thread

open backend

re-open backend

report successful
recovery

send status "OK"
to CS

send status "error"
to CS

wait for error

runtime_error

recovery message

OK

error message

M. Killenberg (DESY) Device Error Handling in ChimeraTK 6



Device module thread

Device module thread

Open the device backend at application start

Run initialisation sequence

Wait for error messages

Send error message to control system

Try to re-open the device backend
(inner loop)

Try to re-initialise the device

Send OK to control system when successful

Send recovery message to all process variables

Device module thread

open backend

re-open backend

report successful
recovery

send status "OK"
to CS

send status "error"
to CS

wait for error

runtime_error

recovery message

OK

error message

M. Killenberg (DESY) Device Error Handling in ChimeraTK 6



Device module thread

Device module thread

Open the device backend at application start

Run initialisation sequence

Wait for error messages

Send error message to control system

Try to re-open the device backend
(inner loop)

Try to re-initialise the device

Send OK to control system when successful

Send recovery message to all process variables

Device module thread

open backend

re-open backend

report successful
recovery

send status "OK"
to CS

send status "error"
to CS

wait for error

runtime_error

recovery message

OK

error message

M. Killenberg (DESY) Device Error Handling in ChimeraTK 6



Device module thread

Device module thread

Open the device backend at application start

Run initialisation sequence

Wait for error messages

Send error message to control system

Try to re-open the device backend
(inner loop)

Try to re-initialise the device

Send OK to control system when successful

Send recovery message to all process variables

Device module thread

initialise

initialise

open backend

re-open backend

report successful
recovery

send status "OK"
to CS

send status "error"
to CS

wait for error

runtime_error
OK

recovery message

OK

runtime_error

error message

M. Killenberg (DESY) Device Error Handling in ChimeraTK 6



Device error handling

The whole picture

ProcessVariable::read()

wait for recovery

report error

read request

backend.read()

send value

runtime_errorOK

Device module thread

initialise

initialise

open backend

re-open backend

report successful
recovery

send status "OK"
to CS

send status "error"
to CS

wait for error

runtime_error
OK

recovery message

OK

runtime_error

error message

M. Killenberg (DESY) Device Error Handling in ChimeraTK 7



Summary

ChimeraTK

design modular, multi-threaded applications

talk to hardware

interface with the control system infrastructure

Device error handling in ApplicationCore

build into the framework

available out of the box (no extra code required)

option to initialise device after (re-)connection

M. Killenberg (DESY) Device Error Handling in ChimeraTK 8



Software Repositories All software is published under the GNU GPL or the GNU LGPL.

ChimeraTK source code: https://github.com/ChimeraTK

Ubuntu 16.04 packages are available in the DESY DOOCS repository.

Documentation and Tutorials

API documentation https://chimeratk.github.io/

Tuesday’s tutorials on the MicroTCA Workshop Indico page

e-mail support: chimeratk-support@desy.de

M. Killenberg (DESY) Device Error Handling in ChimeraTK 9

https://github.com/ChimeraTK
https://ttfinfo.desy.de/DOOCSWiki/Wiki.jsp?page=DOOCSStandaloneInstallation#section-DOOCSStandaloneInstallation-AddThePublicDOOCSPackageRepositoryToYourSystem
https://chimeratk.github.io/
https://indico.desy.de/indico/event/22525/session/9/contribution/64
mailto:chimeratk-support@desy.de


Backup•

M. Killenberg (DESY) Device Error Handling in ChimeraTK 10



ChimeraTK overview

OPC UA AdapterEPICS Adapter DOOCS Adapter Tango Adapter

Control System Adapter 

Application Core

ReboT Backend DOOCS Backend

TMCB2 Other DOOCS Server

E
th
e
rn
e
t

E
th
e
rn
e
t

Dummy Backend

Device Access Library

PCIe Backend

P
C
Ie

MicroTCA AMC

Your
Application

Module

Application Module

Application Module

M. Killenberg (DESY) Device Error Handling in ChimeraTK 11



What else is new in ApplicationCore?

Status monitor

Check value for upper threshold, lower threshold or window

Threshold for error and warning
Pre-defined status results

OK
Error
Warning
Intentionally off

Work in progress: Automatic status aggregator

Hierarchy modifier

Model your variable content to fit the process view
(not how you have to implement it in C++)

Enables automatic connection of variables

⇒ Even easier connection code

M. Killenberg (DESY) Device Error Handling in ChimeraTK 12


	Title
	Summary
	Resources

	Backup
	Overview

