Towards coherent control of quantum materials

Hermann Dürr Uppsala University

Acknowledgements: Olof Karis, Patrik Thurström, Oscar Grånäs, Olle Eriksson UU Martin Beye DESY Johan Mentink Radboud University

Photonic control of materials' functionality

Can we modify electronic interactions?

Hellman, et al., Rev. Mod. Phys. 89, 025006 (2017)

Magnetic switching with light

Stanciu, et al Phys. Rev. Lett. **99**, 047601 (2007)

Can we coherently control electronic interactions?

1.0

Can we coherently control electronic interactions?

High-harmonic generation in solids

Can we coherently control electronic interactions?

High-harmonic generation in solids

Field-induced manipulation of electron correlations in NiO

Calculated for 40 fs laser pulse @ hv = 0.43 eV

momentum space

N. Tancogne-Dejean, M. A. Sentef, A. Rubio, Phys. Rev. Lett. **121**, 097402 (2018)

Ghimire, Reis, Nature Physics 15, 10 (2019)

What inhibits/promotes coherent excitation?

Rhie, Durr, Eberhardt, Phys. Rev. Lett. **90**, 247201 (2003)

Hellman, et al., Rev. Mod. Phys. 89, 025006 (2017)

What inhibits/promotes coherent excitation?

Rhie, Durr, Eberhardt, Phys. Rev. Lett. **90**, 247201 (2003)

Electronic scattering is fast

Tengdin, et al., Sci. Adv. 4, 9744 (2018)

Short pulses are required to achieve coherence

The conventional way to study magnetization dynamics

Preserving high (attosecond) time resolution requires broadband pulses and energy analysis after the sample

Why x-rays from XFELs? It enables femtosecond nanomagnetism

Reid, et al., Nature Commun. 9, 388 (2018)

Granitzka, et al. (unpublished); arXiv: 1903.08287

Why x-rays from XFELs? It enables detection of non-equilibrium quasiparticle dynamics

phonons

spin-waves

quasi-elastic scattering in the time domain

Probe temporal evolution of diffuse scatter near [011] Bragg peak

We need to include non-equilibrium electronic stress

Henighan, et al. Phys. Rev. B 93, 220301(R) (2016)

Coherent spin waves in antiferromagnets

Bimagnons in LaCuO₄ seen with RIXS

Bisogni, et al. Phys. Rev. B 85, 214527 (2012)

... and in the time domain

Field-driven 'Petaherz Spintronics' in Ni films

Ultrafast intersite spin transfer processes could provide a universal mechanism for coherent spin wave excitation

Segrist, et al. (unpublished); arXiv: 1812.07420

How do we detect coherent (spin wave) excitations?

We need to borrow ideas from laser-based attosecond spectroscopy

