

Towards frequency and time-domain spectroscopy of quantum Floquet states

Steve Johnson

ETH Zurich

Outline

- Correlated electron systems: why and what is there to learn?
- Role of soft-x-ray spectroscopies at FELs
- Lessons from ultrafast optics
- Frontiers

Correlated Electron Systems

[Mai-Linh Doan, CC BY-SA 3.0]

Ferromagnetism

Antiferromagnetism

Superconductivity

Charge and orbital order

[http://mpsd-cmd.cfel.de/research-scie-motti.html]

Mott insulation

Correlated Electron Systems

[Doiron-Leyraud et al. Nature 447, 565 (2007)]

[Hwang et al. PRB 52, 15046 (1995)]

- Interactions strongly compete
- Complex phase diagrams

- What is the physical origin of the correlations in particular materials?
- Is it possible to manipulate or guide correlations?

- What is the physical origin of the correlations in particular materials?
- Is it possible to manipulate or guide correlations?

- What is the physical origin of the correlations in particular materials?
 - Measure strength of interactions
 - Compare over materials, phases

- Needs theory to directly relate to correlations
- Comparisons usually change multiple variables, hard to sort out causality
- Ideal: study interactions vs. multiple single coordinates that switch correlations on and off (quickly)

[Doiron-Leyraud et al. Nature 447, 565 (2007)]

200

150

100

50

0.0

Femperature (K)

TN

T

0.3

Superconductor

0.2 Hole doping, p

0.1

- Is it possible to manipulate or guide correlations?
 - "Designer" materials
 - Guided search relies on understanding of mechanisms
 - Variety of control parameters
 - Transient vs. persistent Floquet states

Light-Induced Superconductivity in a Stripe-Ordered Cuprate D. Fausti et al. Science 331, 189 (2011); DOI: 10.1126/science.1197294

[F. Mahmood et al., Nature Physics 12, 306 (2016)]

Floquet states in quantum systems

Figure 6.1. Representing the response of a physical system to a driving laser field: in time (left), the system evolves through

- Quasi-steady state, driven system can have strikingly different properties
- Need time-resolved methods to avoid heating issues
- Also need low-frequency but narrow-band pump

X-ray spectroscopies

• Access to O K-edge, 3d L-edges

X-ray spectroscopies

X-ray absorption

- Correlated systems:
 - L_{2,3}-edges of transition metals: 3d orbitals
 - K-edge of O: 2p orbitals

Resonant inelastic scattering

[Fink et al. Rep. Prog. Phys. **76**, 056502 (2013)]

Resonant elastic scattering

X-ray spectroscopies

• XAS: electronic structure, element-specific magnetic moment (XMCD)

• RIXS: low-energy excitations, dispersion

[J. Schlappa et al., Nature 485, 82 (2012)]

REXS: long-range order of valence orders

https://www-ssrl.slac.stanford.edu/stohr/xmcd.htr

P^{or} ⊗Mn³⁺ Mn⁴⁺ O⁻ O^{2−}

[[]M. Cohey, Nature 430, 155 (2004)]

Why FEL?

- Main advantages for time-resolved (pump-probe) measurements
- As probe:
 - "Snapshots" of electronic, magnetic structure (XAS, REXS)
 - Applied to RIXS, gives coupling to low-energy excitations (vs. momentum)
- As pump:
 - Very fast decoherence (~ fs), scattering to many other states (heating)
 - Sample damage issues (esp. for nonlinear cases)

Example: THz pump, REXS probe

[T. Kubacka et al., Science 343, 1333 (2014)]

- THz pump of "electromagnon"
 - Hybrid of spin and lattice excitations
 - Very specific excitation: minimal competing channels
- RXES probe of magnetic structure shows spin response

 High time resolution: unique opportunity to explore new time-domain analogs of conventional spectroscopies

- Optics: pump-probe in perturbative regime gives information similar to spontaneous Raman scattering
- Requires pulses shorter than period

[C. Aku-Leh et al. PRB **71**, 205211 (2005)]

- Optics: pump-probe in perturbative regime gives information similar to spontaneous Raman scattering
- Requires pulses shorter than period

nature physics

Fourier-transform inelastic X-ray scattering from time- and momentum-dependent phonon-phonon correlations

M. Trigo^{1,2}*, M. Fuchs^{1,2}, J. Chen^{1,2}, M. P. Jiang^{1,2}, M. Cammarata³, S. Fahy⁴, D. M. Fritz³, K. Gaffney², S. Ghimire², A. Higginbotham⁵, S. L. Johnson⁶, M. E. Kozina², J. Larsson⁷, H. Lemke³, A. M. Lindenberg^{1,2,8}, G. Ndabashimiye², F. Quirin⁹, K. Sokolowski-Tinten⁹, C. Uher¹⁰, G. Wang¹⁰, J. S. Wark⁵, D. Zhu³ and D. A. Reis^{1,2,11}*

LETTERS

PUBLISHED ONLINE: 27 OCTOBER 2013 | DOI: 10.1038/NPHYS2788

2.0 THz

2.0 THz

9 THz

1.9 THz

Sufficiently 15 THZ
coherence

 Coherenc coverage $H_I \propto \sum_{q,q',b,b',k,k'} \Pi_{q,q',b,b',k,k'} a_q^{\dagger} a_{q'} c_{bk}^{\dagger} c_{b'k'}$

nomentum

Limits and Opportunities

- Narrow-band THz/MIR (1-30 THz, BW ~ 1-10%, fields ~ 1-10 MV/cm) needed for study of Floquet physics
- Pulse duration < 10 fs gives enough bandwidth to study < 60 meV excitations via FT methods
 - ~ 0.3 fs may be limit for diffraction (0.3 fs * c = 90 nm)
 - Here pump/synchronization is more of a limit (assuming non-XFEL)
- FT limited pulses: cover higher lying excitations as RIXS via spectral analysis, *simultaneously*
- Ability to smoothly tune pulse duration and bandwidth within FT limit beneficial
- Accurately timed and phased double pulses might be useful for double pump schemes (needs further study)
- Stability essential
- Complete polarization control essential