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Time scales & molecular dynamics

Shortest
light pulse

43 as
[ [ ‘ | | ‘ [ | ‘ | | ‘ | | ‘ | | ‘ | [ ‘ | | ‘

101 101%™ 1012 10°% 10% 103 1 106 1012 1018
an °9° o . J
46» H“"t'"QH * S {fu
oo Tan Atomic unit of time:
24 attoseconds
Electron o
time scale Electron orbit time

around the nucleus:
150 attoseconds

DESY. Francesca Calegari, XFEL workshop 2019 Page 2



Ultrafast molecular dynamics

Ultrafast dynamics  proven to be at the core of many photo-chemical and
photo-biological processes

o

Vision (isomerization of the retinal <100 fs)
Photosyntesis (energy transfer <200 fs)

o DNA damage/photo-protection (ultrafast relaxation
through conical intersections <100 fs)

o

Role of electron dynamics
in the photochemistry of
complex molecules

Watch and control new
properties emerging at the
level of electrons
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HHG and attosecond pulse generation

\
Three-step model
>
1. Tunnel ionization %
c
2. Acceleration -
3. Recollision Photon energy
Laser field XUV

attosecond
pulse

Coulomb potential

P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)
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The attosecond pulse train

Time domain Frequency domain
A A 13t 15th
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17th
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Time Frequency

HHG every half cycle of the driving laser: attosecond pulse train

The interference between attosecond pulses separated T/2 gives rise to
odd order harmonics of the fundamental frequency (spaced 2w)
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Isolated attosecond pulse

Time domain Frequency domain
A A
I I
—_—

Time Frequency
Gating methods on HHG A single attosecond pulse
allow the generation of an corresponds to a broad continuous
isolated attosecond pulse emission in the frequency domain
Shortest attosecond pulse 43 as! G. Sansone et al., Science 314, 443 (2006)
T Gaumnitz et al, OptiCS Express 25 (2017) F Calegari etal., J. PhyS B 45, 074002 (2012)

S. Gilbertson et al., Phys. Rev. A 81, 043810 (2010)
F. Ferrari et al., Nat. Photonics 4, 875 (2010)
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Attosecond pump probe setup
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Advantages and disadvantages of table top
sources

Attosecond pulses generated in a
broad spectral range (from VUV to
Soft-x)

Very good pulse to pulse stability

Attosecond synchronization with a
second laser pulse

Reproducibility of the experiment

CEP stability and reproducible
electric field
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Low conversion efficiency of the
process - limited pulse energy

(pJ-nJ)

With current pulse energies in the
soft-x no possibility for two color
experiments (soft-x pump soft-x
probe)

Limited photon energy

Not enough photon flux for
imaging at high photon energies

Page 8



Scientific case: charge migration

After ionization a hole is created

”‘\”/\7;7&:/# ;ﬁ/ﬁrﬂg};& =0 The hole can migrate from one end
o | | to the other of the molecule in
m Jd, A 1 _4 attoseconds / few-femtoseconds
gl A Process driven by electronic
W : correlations
P kg ° ':pAu" gl
- W4 ‘7—,;).]/\ ._,,,4;\./2,\'{__; == t=4fs

S. Linnemann et al., Chemical Physics Letters 450, 232 (2008)
L. Cederbaum, J. Zobeley, Chem. Phys. Lett. 307, 205 (1999)
F. Remacle, R. Levine, PNAS 103, 6793 (2006)

A. Kuleff, L. Cederbaum, Chem. Phys. 338, 320 (2007)
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Is it possible to drive the charge on the
attosecond/few-femtosecond time
scale?

Can we control the fate of the molecule
by acting on this extreme time scale?

Page 9



Experimental approach

Time resolved photofragmentation
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Mass spectra for aromatic amino acids
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(M-COOH)** = Doubly charged immonium ion
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Time dependent dication yield

Dication yield after subtraction of the 25-fs decay
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F. Calegari et al., Science 346, 336 (2014) Sub 4.5 fs oscillations:

F. Calegari et al., IEEE JSTQE 21, 2419218 (2015) e
M. Nisoli et al., Chem Rev 117 10760 (2017) Electron dynamics"
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Theoretical model

Evolution of electronic wave packet evaluated by standard time-dependent
density matrix formalism

PHENYLALANINE Complex hole dynamics for both
| Phenylalanine and Tryptophan

TRYPTOPHAN

0.00 fs

0.00fs
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Probing charge density variations

The IR probe pulse is more likely to
be absorbed on the amino site of
the molecule and it creates the

doubly charged ion

;o
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Fast charge density variations on
the amino site produce fast yield
variations in the doubly charged
lon

0.00 fs

Visualization of the electron density variations around a
functional group in real-time
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Charge migration between two functional
groups

Phenylalanine: superposition of A25 and A28: migration from amine to carboxyl
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New perspectives at FELs

Attosecond science at
Free Electron Lasers (FELS)

S Serkez et al, J. Opt. 024005, 20
(2018), review article

New perspectives for short pulse
durations @ European XFEL

At present attosecond pulses are
generated at LCLS
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LCLS Il — charge migration

Charge migration as one of the science drivers for LCLS Il (see next talk)

Fundamental Dynamics of Energy and Charge

Charge migration, redistribution and localization even in simple molecules are not well
understood at the quantum level, and these processes are central to complex processes
like photosynthesis, catalysis and bond formation/dissolution that govern all chemical
reactions. Indirect evidence points to the importance of quantum coherences and coupled
evolution of electronic and nuclear wave functions in many molecular systems.

However, it hasn't been possible to directly observe these processes to date, and they are
beyond the description of conventional chemistry models. High-repetition-rate soft X-rays
from LCLS-II will enable new techniques that will directly map charge distributions and
reaction dynamics at the scale of molecules.
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New perspectives at FELS

What are the advantages and disadvantages of attose  cond FEL?

e Bright emission « SASE does not allow for pulse
reproducibility
« High photon energy
* Need for single shot detection
« Two-color experiments in the soft-
X/X-ray « Attosecond synchronization with
an external laser?
« Synchronization with a second
laser pulse

« Possibility for diffractive imaging
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New perspectives at FELS

Initiate and track quantum coherences with site spe cificity

A two color experiment would
allow for initiating the charge

Pump migration on a specific atomic site
and track it on a different atomic
site

Charge K edges of C,N,O (soft-x)
Probe flow K edges of metals (x ray)

Metallic markers can be used to
Atomic markers track the charge

Charge migration in metallic
complexes
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New perspectives at FELS

Initiate and track quantum coherences with site spe cificity

A FEL offers the possibility to use different spectroscopy technigues

- Time resolved photo-electron and photo-ion spectroscopy
- Time resolved absorption spectroscopy
- Time resolved imaging

Attosecond pulses @ FELs allows to
act on the system on the same time
scale (or even faster) then shake-up,
shake-off and auger processes - a
new level of control on the system
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Few fs Pulses at FLASH — first Results

Example: For 41 nm XUV radiation

at FLASH2
» Single mode: the minimum ip X10°
radiation pulse duration ol \ — -0
(SASE): - o
;; 81 —-31
M )‘r Lsat(lrr}’) 2 o
FWHM) = 2 4
T ( ) ScA. g - A
E
M number of modes 0 J J . .
39 40 41 42 43

L., Saturation length A /nm
A, radiation wavelength

A, undulator period maximum fluctuation: 97%
u

— number of modes: 1.05

FEL pulse duration: 14 fs
Juliane Ronsch-Schulenburg (FWHM)
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Attosecond Science with

Wavelength 5 nm

pulse length 50-70 asec (FWHM)
pulse energy 5 nJ

contrast above 98%

150+

1004

P (MW)

42 43 44 45
t(fs)

E. Schneidmiller, M. Yurkov

With XFEL attosecond pulses
@ higher photon energies?
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FLASH2020+

Scaling of XUV HHG laser sources
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The attosecond science group @ DESY

Leading Scientist

Prof. Dr. Francesca Calegari
Scientist

Dr Andrea Trabattoni
Postdoctoral researchers

Dr Andrea Cartella

Dr Erik Mansson

PhD students

Mara Galli

Vincent Wanie

Lorenzo Colaizzi
Krishna Saraswathula

Gaia Giovannetti

You can find us @CFEL (building 99)
francesca.calegari@desy.de
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