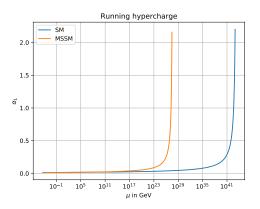
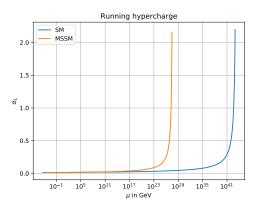
Asymptotically Safe Extensions of the MSSM

[Work in progress in collaboration with Gudrun Hiller and Daniel Litim]

DESY Theory Workshop 2019 Quantum field theory meets gravity

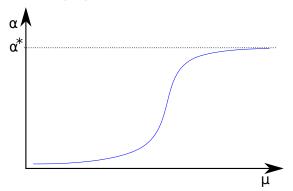

Kevin Moch

TU Dortmund


25.09.2019

• The Standard Model (SM) is not fundamental

• The Standard Model (SM) is not fundamental

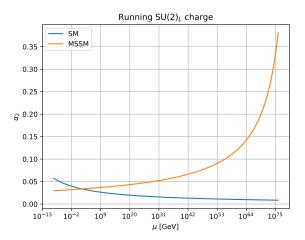


Not only a perturbative artifact

[H. Gies and J. Jaeckel, 2004]

- The Standard Model (SM) is not fundamental
- Asymptotically safe (AS) models are physical at all energies

- The Standard Model (SM) is not fundamental
- Asymptotically safe (AS) models are physical at all energies
- ullet The SM can be extended at $\sim \mathcal{O}(\text{TeV})$ to become AS without gravity


[A. Bond, G. Hiller, K. Kowalska, D. Litim, 2017]

- The Standard Model (SM) is not fundamental
- Asymptotically safe (AS) models are physical at all energies
- \bullet The SM can be extended at $\sim \mathcal{O}(\text{TeV})$ to become AS without gravity [A. Bond, G. Hiller, K. Kowalska, D. Litim, 2017]
- Also possible for the minimal supersymmetric SM (MSSM)?

2/17

- The Standard Model (SM) is not fundamental
- Asymptotically safe (AS) models are physical at all energies
- \bullet The SM can be extended at $\sim \mathcal{O}(\text{TeV})$ to become AS without gravity [A. Bond, G. Hiller, K. Kowalska, D. Litim, 2017]
- Also possible for the minimal supersymmetric SM (MSSM)?
- In the MSSM, also the $SU(2)_L$ coupling has a Landau pole

2/17

The MSSM is not AS, with or without *R*-parity violating terms.

Find an asymptotically safe MSSM extension (without gravity)

Find an asymptotically safe MSSM extension (without gravity)

Yukawa interactions are necessary for AS within perturbation theory
[A. Bond, D. Litim, 2016]

Find an asymptotically safe MSSM extension (without gravity)

Yukawa interactions are necessary for AS within perturbation theory [A. Bond, D. Litim, 2016]

 \Rightarrow Focus on gauge-Yukawa models

Find an asymptotically safe MSSM extension (without gravity)

Yukawa interactions are necessary for AS within perturbation theory [A. Bond, D. Litim, 2016]

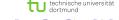
⇒ Focus on gauge-Yukawa models

It was argumented that perturbatively, AS SUSY models do not exist [S. Martin, J. Wells, 2000]

Find an asymptotically safe MSSM extension (without gravity)

Yukawa interactions are necessary for AS within perturbation theory

[A. Bond, D. Litim, 2016]


 \Rightarrow Focus on gauge-Yukawa models

It was argumented that perturbatively, AS SUSY models do not exist

[S. Martin, J. Wells, 2000]

Loophole: Semi-simple gauge groups → AS SUSY models found (MSSM not yet included)

[A. Bond, D. Litim, 2017]

ullet $\mathcal{N}=1$ supersymmetry in 4D

5 / 17

- $\mathcal{N}=1$ supersymmetry in 4D
- Gauge-Yukawa models, superpotential $W = \frac{1}{6} Y^{ijk} \Psi_i \Psi_i \Psi_k$

- ullet $\mathcal{N}=1$ supersymmetry in 4D
- ullet Gauge-Yukawa models, superpotential $W=rac{1}{6}Y^{ijk}\Psi_i\Psi_j\Psi_k$
- Gauge anomaly absence

- ullet $\mathcal{N}=1$ supersymmetry in 4D
- Gauge-Yukawa models, superpotential $W = \frac{1}{6} Y^{ijk} \Psi_i \Psi_i \Psi_k$
- Gauge anomaly absence
- Beta functions at 2-loop gauge and 1-loop Yukawa level

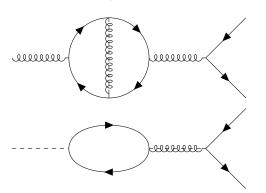
[S. Martin, M. Vaughn, 1994]

- $\mathcal{N} = 1$ supersymmetry in 4D
- Gauge-Yukawa models, superpotential $W = \frac{1}{6} Y^{ijk} \Psi_i \Psi_i \Psi_k$
- Gauge anomaly absence
- Beta functions at 2-loop gauge and 1-loop Yukawa level

[S. Martin, M. Vaughn, 1994]

• Define couplings $\alpha_i = \frac{g_i^2}{(4\pi)^2}$, $\alpha_{Y^{ijk}} = \frac{|Y^{ijk}|^2}{(4\pi)^2}$, $\alpha = (\alpha_i, \alpha_{Y^{ijk}})$

- ullet $\mathcal{N}=1$ supersymmetry in 4D
- ullet Gauge-Yukawa models, superpotential $W=rac{1}{6}Y^{ijk}\Psi_i\Psi_j\Psi_k$
- Gauge anomaly absence
- Beta functions at 2-loop gauge and 1-loop Yukawa level


[S. Martin, M. Vaughn, 1994]

- Define couplings $\alpha_i = \frac{g_i^2}{(4\pi)^2}$, $\alpha_{Y^{ijk}} = \frac{|Y^{ijk}|^2}{(4\pi)^2}$, $\alpha = (\alpha_i, \alpha_{Y^{ijk}})$
- Fixed point (FP) α^* with $\beta_i(\alpha^*) = 0$ physical and perturbative:

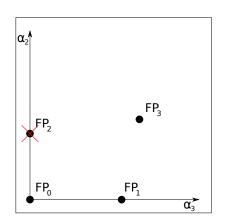
$$0 \leq \alpha_i^* < 1$$
.

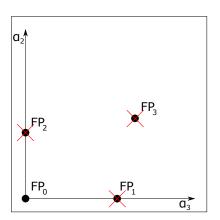
$$\beta_{i} = \alpha_{i}^{2} \left[-B_{i} + C_{i}\alpha_{i} + \sum_{j \neq i} \underline{C_{ij}}\alpha_{j} - \sum_{m} \underline{D_{im}}\alpha_{y_{m}} \right],$$

$$\beta_{y_{m}} = \alpha_{y_{m}} \left[\underline{E_{m}}\alpha_{y_{m}} + \sum_{n \neq m} \underline{E_{mn}}\alpha_{y_{n}} - \sum_{i} \underline{F_{mi}}\alpha_{i} \right].$$

$$\beta_{i} = \alpha_{i}^{2} \left[- \left(B_{i} \right) + C_{i} \alpha_{i} + \sum_{j \neq i} \underline{C_{ij}} \alpha_{j} - \sum_{m} \underline{D_{im}} \alpha_{y_{m}} \right],$$

$$\beta_{y_{m}} = \alpha_{y_{m}} \left[\underline{E_{m}} \alpha_{y_{m}} + \sum_{n \neq m} \underline{E_{mn}} \alpha_{y_{n}} - \sum_{i} \underline{F_{mi}} \alpha_{i} \right].$$


More particles: $(B_i) \searrow , C_i \nearrow$



Gauge group $SU(3)_C \otimes SU(2)_L$

$$B_3 > 0 , B_2 < 0$$
:

$$B_3 < 0 , B_2 < 0$$
:

MSSM

$$SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$$

 $B_3 > 0$, $B_2 < 0$, $B_1 < 0$.

MSSM

$$SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$$

 $B_3 > 0$, $B_2 < 0$, $B_1 < 0$.

For B_3 to stay positive, we may only add the colored fields

- 1) One **3** and one $\overline{\mathbf{3}}$,
- 2) Two $\bf 3$ and two $\bf \overline{3}$.

The four possible candidates for AS MSSM extensions are

1) MSSM + two quark singlets

- 1) MSSM + two quark singlets
- 2) MSSM + four quark singlets

- 1) MSSM + two quark singlets
- 2) MSSM + four quark singlets
- 3) MSSM + two quark doublets

- 1) MSSM + two quark singlets
- 2) MSSM + four quark singlets
- 3) MSSM + two quark doublets
- 4) MSSM + 4th generation (1 quark doublet and 2 quark singlets)

- 1) MSSM + two quark singlets \leftarrow AS models found in scans
- 2) MSSM + four quark singlets \leftarrow No AS models found in scans
- 3) MSSM + two quark doublets \leftarrow No AS models found in scans
- 4) MSSM + 4th generation ← No AS models found in scans

$$\beta_i(g)|_{\alpha^*} \approx \sum_j M_{ij}(\alpha_j - \alpha_j^*) ,$$

with stability matrix

$$M_{ij} = \frac{\partial \beta_i}{\partial \alpha_j} \Big|_{\alpha^*} .$$

$$\beta_i(g)|_{\alpha^*} \approx \sum_j M_{ij}(\alpha_j - \alpha_j^*),$$

with stability matrix

$$M_{ij} = \frac{\partial \beta_i}{\partial \alpha_j} \Big|_{\alpha^*} .$$

Negative/Positive eigenvalue of $M \leftrightarrow \text{UV/IR}$ attractive.

$$\beta_i(g)|_{\alpha^*} \approx \sum_j M_{ij}(\alpha_j - \alpha_j^*) ,$$

with stability matrix

$$M_{ij} = \frac{\partial \beta_i}{\partial \alpha_j} \Big|_{\alpha^*} .$$

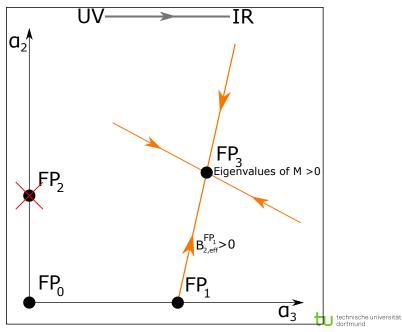
Negative/Positive eigenvalue of $M \leftrightarrow \text{UV/IR}$ attractive. If e.g. $\alpha_2^* = 0$:

$$\beta_2 \big|_{\alpha^*} = -B_{2,\text{eff}}^{\alpha^*} \alpha_2^2 + \mathcal{O}(\alpha_2^3) \;,\; B_{2,\text{eff}}^{\alpha^*} = B_2 - C_{23}' \alpha_3^* - C_{21}' \alpha_1^* \;.$$

$$\beta_i(g)\big|_{\alpha^*} \approx \sum_j M_{ij}(\alpha_j - \alpha_j^*) ,$$

with stability matrix

$$M_{ij} = \frac{\partial \beta_i}{\partial \alpha_j} \Big|_{\alpha^*} .$$


Negative/Positive eigenvalue of $M \leftrightarrow UV/IR$ attractive.

If e.g. $\alpha_2^* = 0$:

$$\beta_2 \big|_{\alpha^*} = -B_{2,\text{eff}}^{\alpha^*} \alpha_2^2 + \mathcal{O}(\alpha_2^3) \;,\; B_{2,\text{eff}}^{\alpha^*} = B_2 - C_{23}' \alpha_3^* - C_{21}' \alpha_1^* \;.$$

Negative/Positive $B_{2,\mathrm{eff}}^{\alpha^*}\leftrightarrow \mathrm{IR/UV}$ attractive.

MSSM + two quark singlets

Scanning $\sim 3.600.000$ models yields 281 AS models with FP $_{\!1}$ UV, FP $_{\!3}$ IR.

MSSM + two quark singlets

Scanning \sim 3.600.000 models yields 281 AS models with FP $_{\!1}$ UV, FP $_{\!3}$ IR. AS Example:

Superfield	SU(3) _C	SU(2) _L	$U(1)_Y$	Multiplicity
quark doublet Q	3	2	$+\frac{1}{6}$	3
up-quark \overline{u}	3	1	$-\frac{2}{3}$	3
down-quark \overline{d}	3	1	$+\frac{1}{3}$	3
lepton doublet L	1	2	$-\frac{1}{2}$	3
lepton singlet \overline{e}	1	1	$+\overline{1}$	3
up-Higgs <i>H</i> _u	1	2	$+\frac{1}{2}$	1
down-Higgs H_d	1	2	$-\frac{1}{2}$	1
BSM quark \overline{d}_4	3	1	$+\frac{1}{3}$	1
BSM anti-quark d_4	3	1	$-\frac{1}{3}$	1
BSM lepton doublet $L_{4,5}$	1	2	$-\frac{1}{2}$	2
BSM anti-lepton doublet $\overline{L}_{1,2}$	1	2	$+\frac{1}{2}$	2

Scanning \sim 3.600.000 models yields 281 AS models with FP $_{\!1}$ UV, FP $_{\!3}$ IR. AS Example:

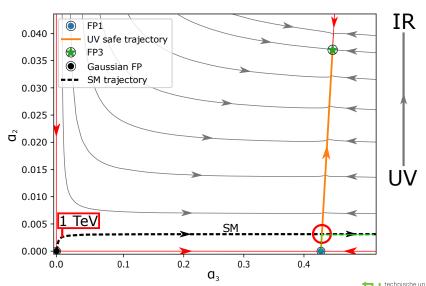
Superfield	SU(3) _C	SU(2) _L	$U(1)_Y$	Multiplicity
quark doublet $\it Q$	3	2	$+\frac{1}{6}$	3
up-quark \overline{u}	3	1	$-\frac{2}{3}$	3
down-quark \overline{d}	3	1	$+\frac{1}{3}$	3
lepton doublet <i>L</i>	1	2	$-\frac{1}{2}$	3
lepton singlet e	1	1	$+\overline{1}$	3
up-Higgs H_u	1	2	$+\frac{1}{2}$	1
down-Higgs H_d	1	2	$-\frac{1}{2}$	1
BSM quark \overline{d}_4	3	1	$+\frac{1}{3}$	1
BSM anti-quark d_4	3	1	$-\frac{1}{3}$	1
BSM lepton doublet $L_{4,5}$	1	2	$-\frac{1}{2}$	2
BSM anti-lepton doublet $\overline{L}_{1,2}$	1	2	$+\frac{1}{2}$	2

$$W = y_1 \overline{d}_4 Q_1 L_1 + y_2 \overline{d}_4 Q_2 L_2 + y_3 \overline{d}_1 Q_1 L_4 + y_4 \overline{d}_2 Q_1 L_5$$

$$+ y_5 \overline{u}_2 Q_1 \overline{L}_1 + y_6 \overline{u}_1 Q_2 \overline{L}_2 + y_t \overline{u}_3 Q_3 H_u + y_b \overline{d}_3 Q_3 H_d$$
technische universität dortmund

Scanning \sim 3.600.000 models yields 281 AS models with FP $_{\!1}$ UV, FP $_{\!3}$ IR. AS Example:

Superfield	SU(3) _C	SU(2) _L	U(1) _Y	Multiplicity
quark doublet $\it Q$	3	2	$+\frac{1}{6}$	3
up-quark \overline{u}	3	1	$-\frac{2}{3}$	3
down-quark \overline{d}	3	1	$+\frac{1}{3}$	3
lepton doublet <i>L</i>	1	2	$-\frac{1}{2}$	3
lepton singlet e	1	1	+1	3
up-Higgs H_u	1	2	$+\frac{1}{2}$	1
down-Higgs H_d	1	2	$-\frac{1}{2}$	1
BSM quark \overline{d}_4	3	1	$+\frac{1}{3}$	1
BSM anti-quark d_4	3	1	$-\frac{1}{3}$	1
BSM lepton doublet $L_{4,5}$	1	2	$-\frac{1}{2}$	2
BSM anti-lepton doublet $\overline{L}_{1,2}$	1	2	$+\frac{1}{2}$	2


$$W = y_1 \overline{d}_4 Q_1 L_1 + y_2 \overline{d}_4 Q_2 L_2 + y_3 \overline{d}_1 Q_1 L_4 + y_4 \overline{d}_2 Q_1 L_5$$

$$+ y_5 \overline{u}_2 Q_1 \overline{L}_1 + y_6 \overline{u}_1 Q_2 \overline{L}_2 + y_t \overline{u}_3 Q_3 H_u + y_b \overline{d}_3 Q_3 H_d$$

$$\rightarrow \text{R parity violation necessary!}$$

$$\downarrow \text{technische universität}$$

General RG flow picture

 $3 \le \#$ BSM Lepton doublets ≤ 13

$$3 \leq \#$$
 BSM Lepton doublets ≤ 13
$$\alpha_3^* > 0.43 \text{ in FP}_1$$

 $3 \le \#$ BSM Lepton doublets ≤ 13

 $lpha_3^* > 0.43$ in FP $_1$ \Rightarrow Matching onto the SM at $\mathcal{O}(\text{MeV})$.

$$3 \leq \#$$
 BSM Lepton doublets ≤ 13

$$\alpha_3^* > 0.43 \text{ in FP}_1 \\ \Rightarrow \text{Matching onto the SM at } \mathcal{O}(\text{MeV}).$$

One can generally show that for all MSSM extensions

•
$$\text{FP}_1\big|_{\alpha_3} > 3/110 \approx 0.027$$

$$3 \leq \#$$
 BSM Lepton doublets ≤ 13

$$\alpha_3^* > 0.43 \text{ in FP}_1 \\ \Rightarrow \text{Matching onto the SM at } \mathcal{O}(\text{MeV}).$$

One can generally show that for all MSSM extensions

- $\mathsf{FP}_1\big|_{\alpha_3} > 3/110 \approx 0.027$
- FP_3 exists $\Leftrightarrow FP_1$ exists and UV.

$$\rightarrow \mathsf{FP}_3\big|_{\alpha_3} > \mathsf{FP}_1\big|_{\alpha_3}$$

All encountered FPs have $\alpha_1^* = 0$.

All encountered FPs have $\alpha_1^*=0$. Near such FPs the running of α_1 reads

$$\beta_1 = -B_{1,\text{eff}}\alpha_1^2 + \mathcal{O}(\alpha_1^3).$$

All encountered FPs have $\alpha_1^* = 0$. Near such FPs the running of α_1 reads

$$\beta_1 = -B_{1,\text{eff}}\alpha_1^2 + \mathcal{O}(\alpha_1^3).$$

We always find $B_{1,eff} < 0$ for both FP₁ and FP₃ $\Rightarrow \alpha_1 \equiv 0$ on UV-safe trajectories.

All encountered FPs have $\alpha_1^* = 0$. Near such FPs the running of α_1 reads

$$\beta_1 = -B_{1,\text{eff}}\alpha_1^2 + \mathcal{O}(\alpha_1^3).$$

We always find $B_{1,\text{eff}} < 0$ for both FP₁ and FP₃ $\Rightarrow \alpha_1 \equiv 0$ on UV-safe trajectories.

Matching onto the SM not possible at all!

Nonperturbative checks

Are FP₁/FP₃ physical and UV/IR beyond perturbation theory?

• Fixed point in SUSY = superconformal field theory (SCFT)

- Fixed point in SUSY = superconformal field theory (SCFT)
- Central charge a of CFT in the UV bigger than in the IR:

```
a_{\rm UV} > a_{\rm IR} [J. Cardy, 1988]
```

- Fixed point in SUSY = superconformal field theory (SCFT)
- Central charge a of CFT in the UV bigger than in the IR:

$$a_{\rm UV} > a_{\rm IR}$$
 [J. Cardy, 1988]

• Central charge a is a function of R-charges of global $U(1)_R$ -group:

$$a = a(R)$$

[D. Anselmi, D. Freedman, M. Grisaruc, A. Johansen, 1998]

- Fixed point in SUSY = superconformal field theory (SCFT)
- Central charge a of CFT in the UV bigger than in the IR:

$$a_{\rm UV} > a_{\rm IR}$$
 [J. Cardy, 1988]

• Central charge a is a function of R-charges of global $U(1)_R$ -group:

$$a = a(R)$$

[D. Anselmi, D. Freedman, M. Grisaruc, A. Johansen, 1998]

R maximizes a in a SCFT [K. Intriligator, B. Wecht, 2003]

- Fixed point in SUSY = superconformal field theory (SCFT)
- Central charge a of CFT in the UV bigger than in the IR:

$$a_{\rm UV} > a_{\rm IR}$$
 [J. Cardy, 1988]

• Central charge a is a function of R-charges of global $U(1)_R$ -group:

$$a = a(R)$$

[D. Anselmi, D. Freedman, M. Grisaruc, A. Johansen, 1998]

- R maximizes a in a SCFT [K. Intriligator, B. Wecht, 2003]
- → Benchmarks are in agreement with exact SCFT relations

AS plus SUSY very restrictive

- AS plus SUSY very restrictive
- AS MSSM extensions found

- AS plus SUSY very restrictive
- ullet AS MSSM extensions found o **exactly** two additional quarks

- AS plus SUSY very restrictive
- AS MSSM extensions found → exactly two additional guarks
- AS benchmarks in agreement with exact relations from SCFT

- AS plus SUSY very restrictive
- AS MSSM extensions found → exactly two additional quarks
- AS benchmarks in agreement with exact relations from SCFT
- Two challenges remain:
 - 1) Matching scale onto SM too low, $\mathcal{O}(\text{MeV})$

17 / 17

- AS plus SUSY very restrictive
- ullet AS MSSM extensions found o **exactly** two additional quarks
- AS benchmarks in agreement with exact relations from SCFT
- Two challenges remain:
 - 1) Matching scale onto SM too low, $\mathcal{O}(MeV)$
 - 2) For all models, UV-safe trajectories have $\alpha_1=0$

17 / 17

- AS plus SUSY very restrictive
- AS MSSM extensions found → exactly two additional quarks
- AS benchmarks in agreement with exact relations from SCFT
- Two challenges remain:
 - 1) Matching scale onto SM too low, $\mathcal{O}(\text{MeV})$
 - 2) For all models, UV-safe trajectories have $\alpha_1=0$
- Next step: Include non-abelian gauge factor to circumvent restrictions from the MSSM

- AS plus SUSY very restrictive
- AS MSSM extensions found → exactly two additional quarks
- AS benchmarks in agreement with exact relations from SCFT
- Two challenges remain:
 - 1) Matching scale onto SM too low, $\mathcal{O}(MeV)$
 - 2) For all models, UV-safe trajectories have $\alpha_1=0$
- Next step: Include non-abelian gauge factor to circumvent restrictions from the MSSM

Stay tuned!

- [1] H. Gies and J. Jaeckel, Phys. Rev. Lett. 93 (2004) 110405 doi:10.1103/PhysRevLett.93.110405 [hep-ph/0405183].
- [2] A. D. Bond, G. Hiller, K. Kowalska and D. F. Litim, "Directions for model building from asymptotic safety," JHEP 1708 (2017) 004 doi:10.1007/JHEP08(2017)004 [arXiv:1702.01727 [hep-ph]].
- [3] K. Kowalska, A. Bond, G. Hiller and D. Litim, "Towards an asymptotically safe completion of the Standard Model," PoS EPS -HEP2017 (2017) 542. doi:10.22323/1.314.0542
- [4] A. D. Bond and D. F. Litim, "Theorems for Asymptotic Safety of Gauge Theories," Eur. Phys. J. C 77 (2017) no.6, 429 Erratum: [Eur. Phys. J. C 77 (2017) no.8, 525] doi:10.1140/epjc/s10052-017-4976-5, 10.1140/epjc/s10052-017-5034-z [arXiv:1608.00519 [hep-th]].
- [5] S. P. Martin and J. D. Wells, Phys. Rev. D 64 (2001) 036010 doi:10.1103/PhysRevD.64.036010 [hep-ph/0011382].

- [6] A. D. Bond and D. F. Litim, "Asymptotic safety guaranteed in supersymmetry," Phys. Rev. Lett. 119 (2017) no.21, 211601 doi:10.1103/PhysRevLett.119.211601 [arXiv:1709.06953 [hep-th]].
- [7] S. P. Martin and M. T. Vaughn, "Two loop renormalization group equations for soft supersymmetry breaking couplings," Phys. Rev. D 50 (1994) 2282 Erratum: [Phys. Rev. D 78 (2008) 039903] doi:10.1103/PhysRevD.50.2282, 10.1103/PhysRevD.78.039903 [arXiv:9311340 [hep-ph]].
- J. L. Cardy, "Is There a c Theorem in Four-Dimensions?," Phys. Lett.
 B 215 (1988) 749. doi:10.1016/0370-2693(88)90054-8
- [9] D. Anselmi, D. Z. Freedman, M. T. Grisaru and A. A. Johansen, "Nonperturbative formulas for central functions of supersymmetric gauge theories," Nucl. Phys. B 526 (1998) 543 doi:10.1016/S0550-3213(98)00278-8 [arXiv:9708042 [hep-th]].

[10] K. A. Intriligator and B. Wecht, "The Exact superconformal R symmetry maximizes a," Nucl. Phys. B 667 (2003) 183 doi:10.1016/S0550-3213(03)00459-0 [arXiv:0304128 [hep-th]].

