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XENON-like Direct Detection Exp.
● Promising DM-Candidate: The WIMP (fermionic in this work)
● Direct detector searches, test non-relativistic regime
● Consisting of a lquid xenon (target) and a gaseous xenon 

phase
● Aim to observe the recoil induced by DM scattering off nuclei
● Measuring light signal from DM-nucleus scattering using PMTs 

and from driftet electrons that enter the gaseous phase
● Typically focus on elastic scattering signal

E.Aprile et al.
[ArXiv:1902.03234]
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C. McCabe
[ArXiv:1512.00460]

L. Baudis et al.
[ArXiv:1309.0825]

J.R. Ellis et al. 
[Phys. Lett. B212]

● In xenon the two isotops Xe and Xe ¹²⁹Xe and ¹³¹Xe ¹³¹
have high natural abundance (20%-26%)

● Obersvation: First excited states of the two 
xenon isotops are unusally low 

● Excitation energy in the range of typical WIMP 
energy=> can be excited by WIMP-nucleus 
scattering

● Studied by e.g.:



DM-Nucleus Scattering
Non-relativistic effective field theory

● Maximal DM-velocity
=> direct detection tests non-relativistic regime

A.L.Fitzpatrick et al. 
[ArXiv:1203.3542]



DM-Nucleus Scattering
Non-relativistic effective field theory

● Maximal DM-velocity
=> direct detection tests non-relativistic regime

● Effective: independent of specific particle model                             

A.L.Fitzpatrick et al. 
[ArXiv:1203.3542]



DM-Nucleus Scattering
Non-relativistic effective field theory

● Maximal DM-velocity
=> direct detection tests non-relativistic regime

● Effective: independent of specific particle model                             
● DM-Nucleon interactions have to fullfill: energy and momentum conservation, 

Galilean invariance, hermicity

A.L.Fitzpatrick et al. 
[ArXiv:1203.3542]



DM-Nucleus Scattering
Non-relativistic effective field theory

● Maximal DM-velocity
=> direct detection tests non-relativistic regime

● Effective: independent of specific particle model                             
● DM-Nucleon interactions have to fullfill: energy and momentum conservation, 

Galilean invariance, hermicity
● Leading to five fundamental QM-operators

A.L.Fitzpatrick et al. 
[ArXiv:1203.3542]



DM-Nucleus Scattering
Non-relativistic effective field theory

● Maximal DM-velocity
=> direct detection tests non-relativistic regime

● Effective: independent of specific particle model                             
● DM-Nucleon interactions have to fullfill: energy and momentum conservation, 

Galilean invariance, hermicity
● Leading to five fundamental QM-operators

A.L.Fitzpatrick et al. 
[ArXiv:1203.3542]



NREFT Operators

SD

SI

➔ Fund. Operators combine to a set of DM-Nucleon interaction operators

Set of linear ind. one-body 
DM-nucleonDM-nucleon interaction 
operators, that are at most most 
linearlinear in the fundamental ops.



NREFT Operators

SD

SI

➔ Fund. Operators combine to a set of DM-Nucleon interaction operators

Set of linear ind. one-body 
DM-nucleonDM-nucleon interaction 
operators, that are at most most 
linearlinear in the fundamental ops.



NREFT Operators

SD

SI

➔ Fund. Operators combine to a set of DM-Nucleon interaction operators

Set of linear ind. one-body 
DM-nucleonDM-nucleon interaction 
operators, that are at most most 
linearlinear in the fundamental ops.

with



NREFT Operators

SD

SI

➔ Fund. Operators combine to a set of DM-Nucleon interaction operators

Set of linear ind. one-body 
DM-nucleonDM-nucleon interaction 
operators, that are at most most 
linearlinear in the fundamental ops.

with
New Physics 
scale



NREFT Operators

SD

SI

➔ Fund. Operators combine to a set of DM-Nucleon interaction operators

Set of linear ind. one-body 
DM-nucleonDM-nucleon interaction 
operators, that are at most most 
linearlinear in the fundamental ops.

with
New Physics 
scale

Differential recoil cross section DM-Nucleus



NREFT Operators

SD

SI

➔ Fund. Operators combine to a set of DM-Nucleon interaction operators

Set of linear ind. one-body 
DM-nucleonDM-nucleon interaction 
operators, that are at most most 
linearlinear in the fundamental ops.

with
New Physics 
scale

Differential recoil cross section DM-Nucleus



NREFT Matrix Element



NREFT Matrix Element

● DM response 
functions

● Here is where the 
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NREFT Matrix Element

● Nuclear response 
functions

● Need to be calculated 
numerically (Nutshell 
package)
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Inelastic Rates

● 6 Operators (SI) with rate-ratios <<10 .⁻³
Understand from O1: elastic rate is coherently enhanced in SI interaction (A²)

● 6 Operators (SD) with rate-ratios of O(0.01-0.1).
Reason: Leads to spin-flip => incoherent process. Only higher momentum transfer

● 2 Opertors with rate ratios of O(10).
Reason: Elastic rate is supressed by       but does not supress inelastic rate

● Ratios of eventrates between inelastic and elastic rates for 14 Operators



Discovery Prospects

Two goals now:

1. Derive a discovery reach for the inelastic signal and compare it to  
          the elastic one.

2. Prospect of using the inelastic signal as discrimination tool.

To do so we implement a likelihood analysis
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Detectorsimulation
XENON-like exp.

Backgrounds

100 tonne x year exposure

Inelastic 
Events
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Events

Corresponds  to 100 
signal events



Part I: Discovery Reach
● Using likelihood ratio method to discriminate between:

a) Hypothesis of BG only
b) Hypothesis of DM(E/I)+BG 

Definition (Discovery Reach):
We define the discovery reach for each DM mass as the value of the DM rate  
for which  90% of experiments find a q0-value with a statistical significance of 
at least 3 sigma (              ).
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Results I

1. Discover 
inelastic signal

2. Discover 
elastic signal

O7 and O13 inelastic signals can be 
seen or excluded in the already 
existing data
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Part II : Operator Discrimination
● Likelihood ratio test between:

a) Hypothesis of signal due to OA
b) Hypothesis of signal due to OB

Derive p-value as a 
measure of distinctness

Increase exposure for 
better discrimination

Only elastic signals

Elastic+inelastic signals



Results II
● Inelastic signal enhancesenhances the 

discrimination potential for OO44 and O and O55

● Only slight enhancement for O4 and O9

● Almost no improvement for O4-O6 and 
O4-O10



Conclusions

● Inelastic rates are for some operators 1%-10% of the respective elastic rates
● Inelastic rates of O7 and O13 are significantly larger than their respective elastic 

rates

Part “0“:

Part “1“:

Part “2“:

● For operators O4,5,6,9,10 a discovery of the elastic signal would motivate the next 
generation direct detection experiment to detect the inelastic signal

● For operators O7 and O13 an inelastic signal would be seen bevor the elastic signal and 
could be seen or excluded in the already existing data

● For 4 operators, the inelastic signal allows for a better discrimination between 
them and standard SD than the elastic signal does



Likelihood Method

Definition (Discovery Reach):
We define the discovery reach for each DM mass as the value of the DM rate  
for which  90% of experiments find a q0-value with a statistical significance of 3 
sigma (              ).

C. McCabe[ArXiv:1512.00460]

Goal: Discriminat between elastic/inelastic and background events
Binned likelihood function

Events from sim. detector

Theoretically expected 
number of events

Background 
uncertainties

Likelihood ratio between the two 
hypotheses: DM(E/E+I)+BG 
signal / BG only



Benchmark values and assumptions
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