

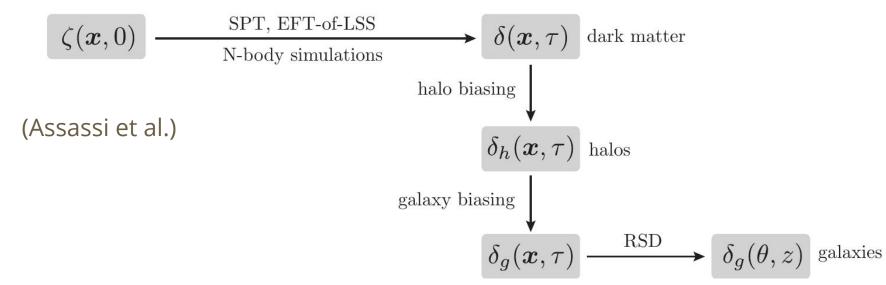
The Effective Field Theory of Large Scale Structure at 3Loops (1906.00997)

Thomas Konstandin , Rafael Porto, HR

Henrique Rubira (DESY) DESY T-Workshop 2019 henrique.rubira@desy.de

Motivation 1

Initial Conditions



Motivation 1 - Main message

Initial Conditions Large-Scale Structure SPT, EFT-of-LSS $\zeta(\boldsymbol{x},0)$ $\delta(oldsymbol{x}, au)$ dark matter N-body simulations halo biasing (Assassi et al.) $\delta_h(m{x}, au)$ halos galaxy biasing We show it is RSD asymptotic (up to 3 $\delta_g(\boldsymbol{x}, \tau)$ $\rightarrow \delta_g(\theta, z)$ galaxies loops)

Main Methods

Trying to go beyond the linear scale:

- Standard Perturbation Theory (SPT);
- Effective Field Theories (EFTs);
- HaloFit and Halomodel;
- Vlasov solvers;
- Schrodinger Method;
- Resummation Methods;
- Simulations.

Standard Perturbation Theory (SPT)

Standard Perturbation Theory (SPT) (Bernadeau et al.)

Mass Conservation

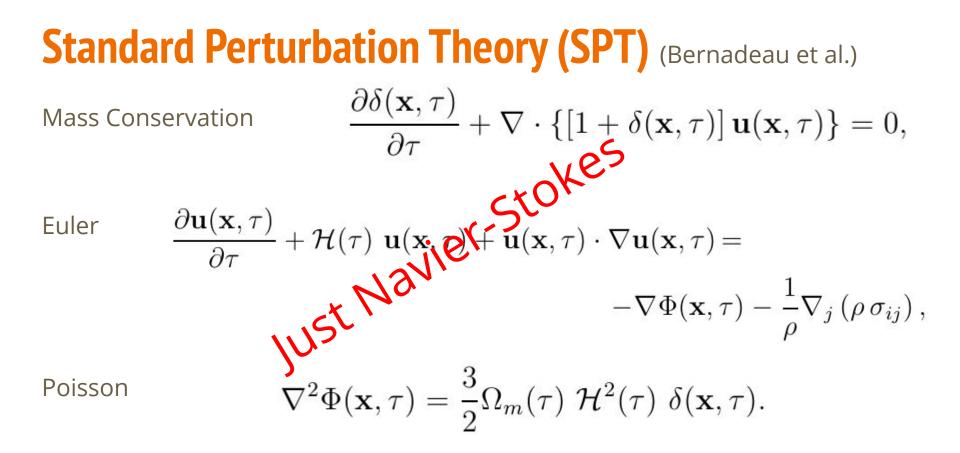
$$\frac{\partial \delta(\mathbf{x}, \tau)}{\partial \tau} + \nabla \cdot \{ [1 + \delta(\mathbf{x}, \tau)] \, \mathbf{u}(\mathbf{x}, \tau) \} = 0,$$

Euler

$$\frac{\partial \mathbf{u}(\mathbf{x},\tau)}{\partial \tau} + \mathcal{H}(\tau) \, \mathbf{u}(\mathbf{x},\tau) + \mathbf{u}(\mathbf{x},\tau) \cdot \nabla \mathbf{u}(\mathbf{x},\tau) = -\nabla \Phi(\mathbf{x},\tau) - \frac{1}{\rho} \nabla_j \left(\rho \, \sigma_{ij}\right),$$

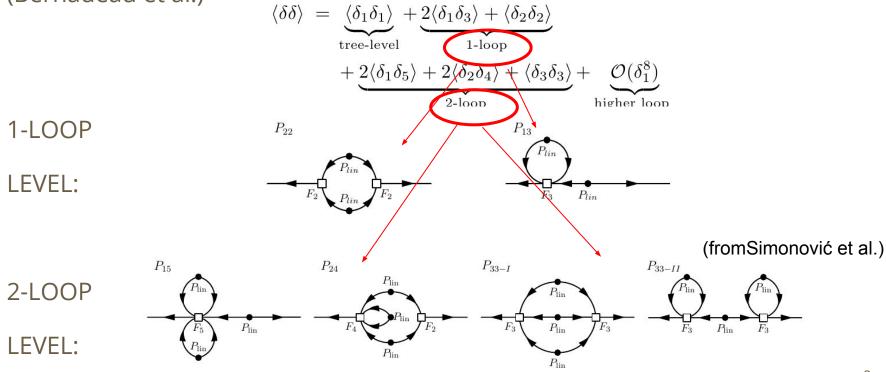
Poisson

$$\nabla^2 \Phi(\mathbf{x}, \tau) = \frac{3}{2} \Omega_m(\tau) \ \mathcal{H}^2(\tau) \ \delta(\mathbf{x}, \tau).$$



Standard Perturbation Theory (SPT) to Diagrams

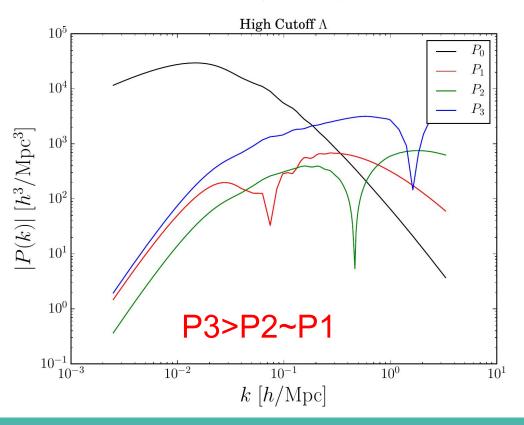
(Bernadeau et al.)



Standard Perturbation Theory (SPT) Results

3-LOOP: Too scary to show

(Blas et al.)



Standard Perturbation Theory (SPT) Problems

- 1) Small Scales are wrong described
- 2) Inserting a cutoff scale (non-physical)

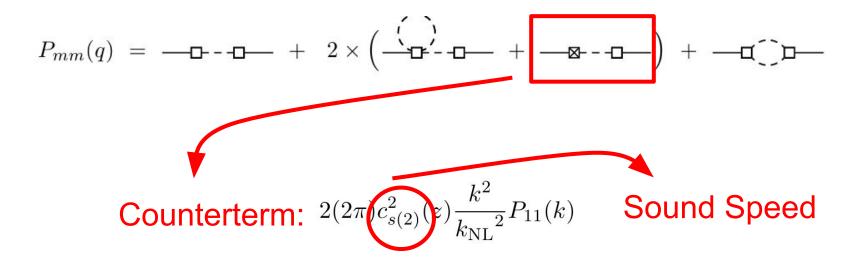
$$P_{22}(k,\tau) \equiv 2 \iint [F_2^{(s)}(\mathbf{k} - \mathbf{q}, \mathbf{q})]^2 P_L(|\mathbf{k} - \mathbf{q}|, \tau) P_L(q, \tau) \mathrm{d}^3 \mathbf{q},$$

$$P_{13}(k,\tau) \equiv 6 \iint F_3^{(s)}(\mathbf{k}, \mathbf{q}, -\mathbf{q}) P_L(k, \tau) P_L(q, \tau) \mathrm{d}^3 \mathbf{q}.$$

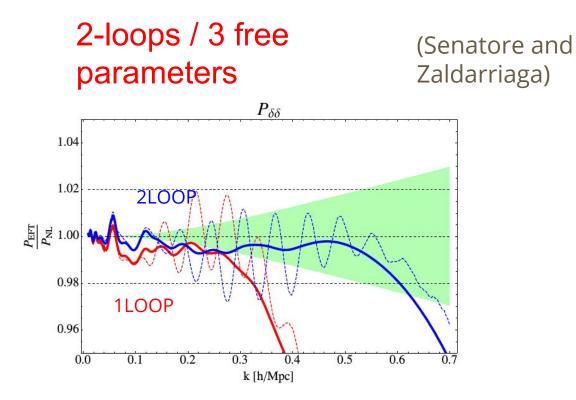
Effective Field Theory

Effective Field Theory

Counterterm will 1) make the theory independent of Λ and 2) parametrize UV

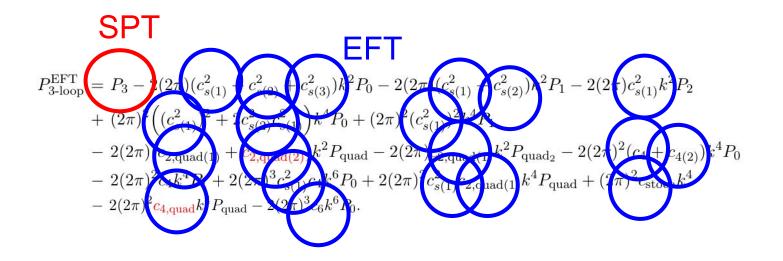


State of the Art



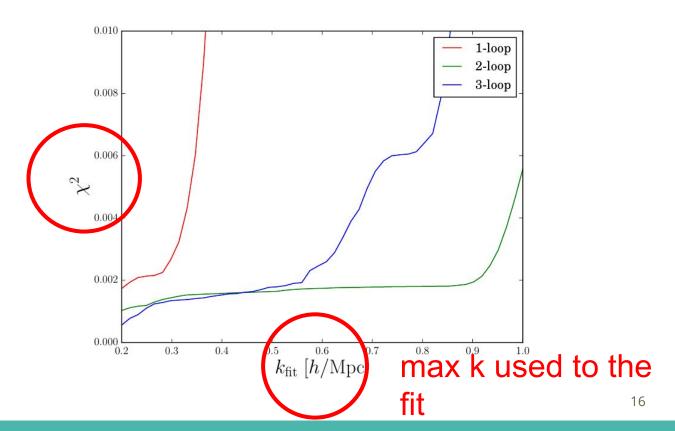
What about going to higher loops?

The allowed terms in the 3LoopEFT calculation are (with 9 free parameters):

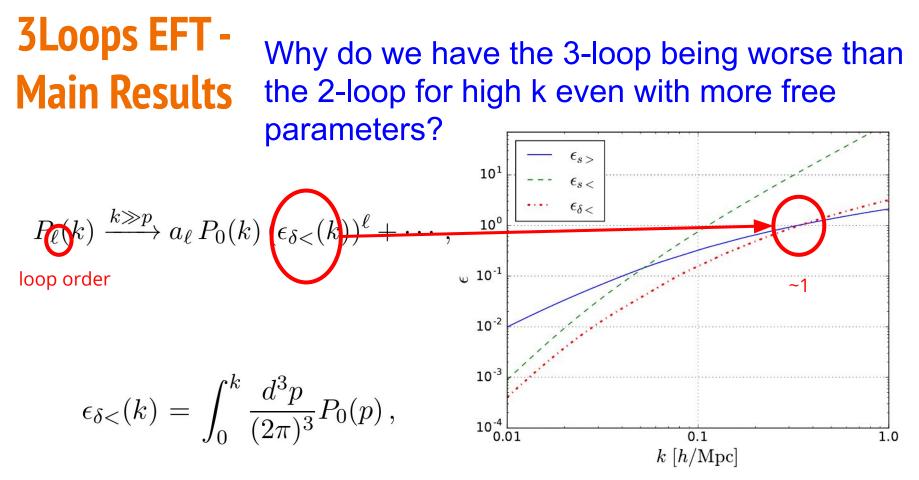


3Loops EFT -Main Results

Comparing Pk with N-body simulation



3Loops EFT - Why do we have the 3-loop being worse than the 2-loop for high k even with more free parameters?



3Loops EFT - Conclusions

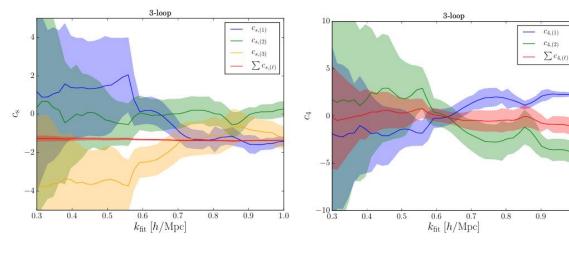
• SPT <u>asymptotic behaviour</u> jeopardizes EFT approach for higher loops;

• 3-loop calculation <u>still the best description</u> at k<0.45 1/hMpc;

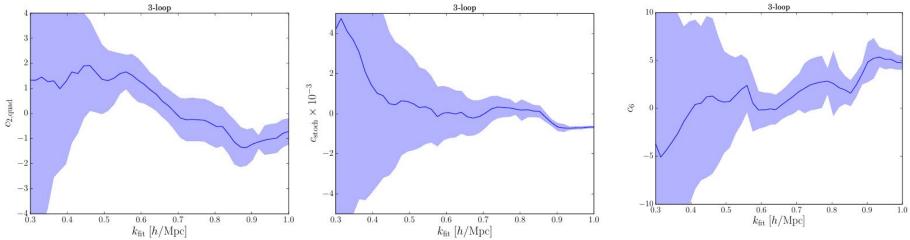
• There seems no space for higher loop calculations. We pushed the theory to its limits;

• Higher N-Point functions could in principle disentangle counter-terms degeneracies and confirm asymptotic behaviour of EFT .

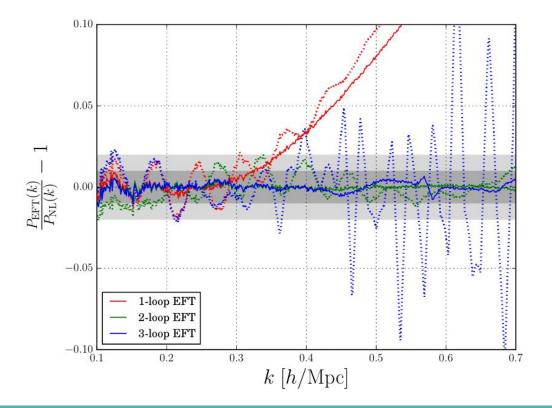
Extra 1 - RG flow



1.0



Extra 2 - IR resummation



Extra 3- compare w/ sim

