The relativistic binary problem theoretical challenges

Jan Steinhoff

Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute), Potsdam-Golm, Germany
DESY Theory Workshop "Quantum field theory meets gravity" September 27th, 2019

Approaches to the relativistic binary problem

Missing third dimension: eccentricity!
 \rightarrow scattering, post-Minkowskian approximation

image credit: A. Buonanno, B.S. Sathyaprakash

Approaches to the relativistic binary problem

Missing third dimension: eccentricity!
\rightarrow scattering, post-Minkowskian approximation
image credit: A. Buonanno, B.S. Sathyaprakash

Main message

J. A. Wheeler
nytimes.com

Look at the relativistic binary problem from a quantum perspective!

Hamilton-Jacobi theory very useful
[Misner, Thorne, Wheeler]
More modern approach: effective field theory (EFT)! see talk by R. Porto [Goldberger, Rothstein, PRD 73 (2006) 104029]

Results for the post-Newtonian potential

conservative part of the motion of the binary
post-Newtonian (PN) approximation: expansion around $\frac{1}{c} \rightarrow 0$ (Newton)

Work by many people ("just" for the spin sector): Barker, Blanchet, Bohé, Buonanno, O'Connell, Damour, D'Eath, Faye, Hartle, Hartung, Hergt, Jaranowski, Marsat, Levi, Ohashi, Owen, Perrodin, Poisson, Porter, Porto, Rothstein, Schäfer, Steinhoff, Tagoshi, Thorne, Tulczyjew, Vaidya

Code for the spin part using EFT: M. Levi, JS, CQG 34 (2017), 244001

Results for the post-Newtonian potential

conservative part of the motion of the binary
post-Newtonian (PN) approximation: expansion around $\frac{1}{c} \rightarrow 0$ (Newton)

order	$\begin{gathered} C^{0} \\ N \end{gathered}$	c^{-1}	$\begin{gathered} C^{-2} \\ 1 P N \end{gathered}$	c^{-3}	$\begin{gathered} C^{-4} \\ 2 P N \end{gathered}$	c^{-5}	$\begin{gathered} C^{-6} \\ 3 P N \end{gathered}$	c^{-7}	$\begin{gathered} C^{-8} \\ 4 \mathrm{PN} \end{gathered}$
non spin	\checkmark		\checkmark		\checkmark		\checkmark		\checkmark
spin-orbit				\checkmark		\checkmark		\checkmark	
Spin ${ }^{2}$					\checkmark		\checkmark		\checkmark
Spin ${ }^{3}$								\checkmark	
Spin ${ }^{4}$		Possible resummation: along diagonal							\checkmark
		\sim naked (st)ring singularities							

Work by many people ("just" for the spin sector): Barker, Blanchet, Bohé, Buonanno, O'Connell, Damour, D'Eath, Faye, Hartle, Hartung, Hergt, Jaranowski, Marsat, Levi, Ohashi, Owen, Perrodin, Poisson, Porter, Porto, Rothstein, Schäfer, Steinhoff, Tagoshi, Thorne, Tulczyjew, Vaidya

Code for the spin part using EFT: M. Levi, JS, CQG 34 (2017), 244001

Summing spin to infinity (leading PN order)

J. Vines, JS, PRD 97 (2018), 064010

Start from an effective point-particle action for black-holes (BHs): Infinite number of higher dimensional couplings, one for each multipole

$$
(\text { mass } \ell \text {-pole })+i(\text { current } \ell \text {-pole })=\operatorname{mass}(i a)^{\ell}, \quad a=\frac{\text { spin }}{\text { mass }}
$$

Still, in the leading-order Hamiltonian, the S^{∞} series can be resummed:

Summing spin to infinity (leading PN order)

J. Vines, JS, PRD 97 (2018), 064010

Start from an effective point-particle action for black-holes (BHs): Infinite number of higher dimensional couplings, one for each multipole

$$
(\text { mass } \ell \text {-pole })+i(\text { current } \ell \text {-pole })=\operatorname{mass}(\text { ia })^{\ell}, \quad a=\frac{\mathrm{spin}}{\text { mass }}
$$

Still, in the leading-order Hamiltonian, the S^{∞} series can be resummed:

$$
H=\frac{\vec{P}^{2}}{2 \mu}-\mu U+4 \vec{P} \cdot \vec{A}+\frac{1}{2} \vec{P} \times\left[\frac{\overrightarrow{S_{1}}}{m_{1}^{2}}+\frac{\overrightarrow{S_{2}}}{m_{2}^{2}}\right] \cdot \vec{\nabla} \mu U
$$

where $M=m_{1}+m_{2}, \quad \mu=M_{1} m_{2} / M$,

$$
\vec{a}_{0}=\vec{a}_{1}+\vec{a}_{2}, \quad \vec{a}_{i}=\vec{S}_{i} / m_{i}
$$

$U=\frac{M r}{r^{2}+a_{0}^{2} \cos ^{2} \theta}, \quad \vec{A}=-\frac{U}{2} \frac{\vec{R} \times \vec{a}_{0}}{r^{2}+a_{0}^{2}}$

oblate-spheroidal coord. r, θ

Summing spin to infinity (leading PN order)

J. Vines, JS, PRD 97 (2018), 064010

Start from an effective point-particle action for black-holes (BHs): Infinite number of higher dimensional couplings, one for each multipole

$$
(\text { mass } \ell \text {-pole })+i(\text { current } \ell \text {-pole })=\operatorname{mass}(\text { ia })^{\ell}, \quad a=\frac{\text { spin }}{\text { mass }}
$$

Still, in the leading-order Hamiltonian, the S^{∞} series can be resummed:

$$
H=\frac{\vec{P}^{2}}{2 \mu}-\mu U+4 \vec{P} \cdot \vec{A}+\frac{1}{2} \vec{P} \times\left[\frac{\overrightarrow{S_{1}}}{m_{1}^{2}}+\frac{\overrightarrow{S_{2}}}{m_{2}^{2}}\right] \cdot \vec{\nabla} \mu U
$$

where $M=m_{1}+m_{2}, \quad \mu=M_{1} m_{2} / M$,

$$
\vec{a}_{0}=\vec{a}_{1}+\vec{a}_{2}, \quad \vec{a}_{i}=\vec{S}_{i} / m_{i}
$$

$U=\frac{M r}{r^{2}+a_{0}^{2} \cos ^{2} \theta}, \quad \vec{A}=-\frac{U}{2} \frac{\vec{R} \times \vec{a}_{0}}{r^{2}+a_{0}^{2}}$ Linearized Kerr metric!
~ Test-mass motion in Kerr metric

oblate-spheroidal coord. r, θ

Summing spin to infinity

Visualization of the result: [J. Vines, JS, PRD 97 (2018), 064010]

Parallels to the Effective-One-Body (EOB) approach!
Gauge invariant quantities simplify: binding energy and radiation modes [N. Siemonsen, JS, J. Vines, PRD 97 (2018), 124046]

Extension to 1st post-Minkowskian (PM) Hamiltonian and scattering angle [J. Vines, CQG 35 (2018), 084002]

Summing spin to infinity

Visualization of the result: [J. Vines, JS, PRD 97 (2018), 064010]

Parallels to the Effective-One-Body (EOB) approach!
Gauge invariant quantities simplify: binding energy and radiation modes [N. Siemonsen, JS, J. Vines, PRD 97 (2018), 124046]

Extension to 1st post-Minkowskian (PM) Hamiltonian and scattering angle [J. Vines, CQG 35 (2018), 084002]

Scattering black holes

dancing duo of black holes
www.ligo.caltech.edu

- Classical scattering: scattering angle χ (more for spinning BHs)
- Quantum analog: scattering amplitude
- BHs ~ "minimally coupled" higher-spin massive particles ? Vaidya (2015): Guevara, Ochirov, Vines (2018); Chung, Huang, Kim, Lee (2019);
Guevara, Ochirov, Vines (2019); Siemonsen, Vines (2019); Arkani-Hamed, Huang, O'Connell (2019); Bautista, Guevara (2019); Guevara (2019); Arkani-Hamed, Huang, Huang (2017);

Scattering black holes

dancing duo of black holes
www.ligo.caltech.edu

- Classical scattering: scattering angle χ (more for spinning BHs)
- Quantum analog: scattering amplitude
- BHs ~ "minimally coupled" higher-spin massive particles ?

Vaidya (2015); Guevara, Ochirov, Vines (2018); Chung, Huang, Kim, Lee (2019);
Guevara, Ochirov, Vines (2019); Siemonsen, Vines (2019); Arkani-Hamed, Huang, O'Connell (2019); Bautista, Guevara (2019); Guevara (2019); Arkani-Hamed, Huang, Huang (2017);

Scattering black holes

dancing duo of black holes
www.ligo.caltech.edu

- Classical scattering: scattering angle χ (more for spinning BHs)
- Quantum analog: scattering amplitude
- BHs ~ "minimally coupled" higher-spin massive particles ?

Vaidya (2015); Guevara, Ochirov, Vines (2018); Chung, Huang, Kim, Lee (2019); Guevara, Ochirov, Vines (2019); Siemonsen, Vines (2019); Arkani-Hamed, Huang, O'Connell (2019);
Bautista, Guevara (2019); Guevara (2019); Arkani-Hamed, Huang, Huang (2017);

2PM scattering angle of (aligned-)spinning BHs

J. Vines, JS, A. Buonanno, PRD 99 (2019) 064054

- Split the scattering angle χ analogous to the amplitude:

- The $f \ldots$ depend impact parameter, velocity, a_{1}, and a_{2}, but not of m_{1}, m_{2} !
- Can take probe (test-BH) limit: $\quad\left(m_{1} \rightarrow 0, E \rightarrow m_{2}, \chi \rightarrow \chi_{t}\right)$

$$
\chi_{t}\left(m_{2}, a_{1}, a_{2}\right)=m_{2}\left[f\left(a_{1}, a_{2}\right)+m_{2} f_{\triangleleft}\left(a_{1}, a_{2}\right)\right]
$$

- Using symmetry $f_{\triangleright}\left(a_{1}, a_{2}\right)=f_{\triangleleft}\left(a_{2}, a_{1}\right)$, we can get back to
- Why? χ_{t} is rather simple to obtain. We have exact BH solutions!
- Can be generalized beyond the probe limit \rightarrow 4PM result in reach!

2PM scattering angle of (aligned-)spinning BHs

J. Vines, JS, A. Buonanno, PRD 99 (2019) 064054

- Split the scattering angle χ analogous to the amplitude:

- The $f \ldots$ depend impact parameter, velocity, a_{1}, and a_{2}, but not of m_{1}, m_{2} !
- Can take probe (test-BH) limit: $\quad\left(m_{1} \rightarrow 0, E \rightarrow m_{2}, \chi \rightarrow \chi_{t}\right)$

$$
\chi_{t}\left(m_{2}, a_{1}, a_{2}\right)=m_{2}\left[f\left(a_{1}, a_{2}\right)+m_{2} f_{\triangleleft}\left(a_{1}, a_{2}\right)\right]
$$

- Using symmetry $f_{\triangleright}\left(a_{1}, a_{2}\right)=f_{\triangleleft}\left(a_{2}, a_{1}\right)$, we can get back to

- Why? χ_{t} is rather simple to obtain. We have exact BH solutions!
- Can be generalized beyond the probe limit \rightarrow 4PM result in reach!

2PM scattering angle of (aligned-)spinning BHs

J. Vines, JS, A. Buonanno, PRD 99 (2019) 064054

- Split the scattering angle χ analogous to the amplitude:

- The f... depend impact parameter, velocity, a_{1}, and a_{2}, but not of m_{1}, m_{2} !
- Can take probe (test-BH) limit: $\quad\left(m_{1} \rightarrow 0, E \rightarrow m_{2}, \chi \rightarrow \chi_{t}\right)$

$$
\chi_{t}\left(m_{2}, a_{1}, a_{2}\right)=m_{2}\left[f\left(a_{1}, a_{2}\right)+m_{2} f_{\triangleleft}\left(a_{1}, a_{2}\right)\right]
$$

- Using symmetry $f_{\triangleright}\left(a_{1}, a_{2}\right)=f_{\triangleleft}\left(a_{2}, a_{1}\right)$, we can get back to χ !

$$
\chi=\frac{E}{M}\left[\frac{m_{1}}{M} \chi_{t}\left(M, a_{1}, a_{2}\right)+\frac{m_{2}}{M} \chi_{t}\left(M, a_{2}, a_{1}\right)\right], \quad M=m_{1}+m_{2}
$$

- Why? χ_{t} is rather simple to obtain. We have exact BH solutions
- Can be generalized beyond the probe limit \rightarrow 4PM result in reach!

2PM scattering angle of (aligned-)spinning BHs

J. Vines, JS, A. Buonanno, PRD 99 (2019) 064054

- Split the scattering angle χ analogous to the amplitude:

- The $f \ldots$ depend impact parameter, velocity, a_{1}, and a_{2}, but not of m_{1}, m_{2} !
- Can take probe (test-BH) limit: $\quad\left(m_{1} \rightarrow 0, E \rightarrow m_{2}, \chi \rightarrow \chi_{t}\right)$

$$
\chi_{t}\left(m_{2}, a_{1}, a_{2}\right)=m_{2}\left[f\left(a_{1}, a_{2}\right)+m_{2} f_{\triangleleft}\left(a_{1}, a_{2}\right)\right]
$$

- Using symmetry $f_{\triangleright}\left(a_{1}, a_{2}\right)=f_{\triangleleft}\left(a_{2}, a_{1}\right)$, we can get back to χ !

$$
\chi=\frac{E}{M}\left[\frac{m_{1}}{M} \chi_{t}\left(M, a_{1}, a_{2}\right)+\frac{m_{2}}{M} \chi_{t}\left(M, a_{2}, a_{1}\right)\right], \quad M=m_{1}+m_{2}
$$

- Why? χ_{t} is rather simple to obtain. We have exact BH solutions!
- Can be generalized beyond the probe limit $\rightarrow 4 \mathrm{PM}$ result in reach!
[D. Bini, T. Damour, A. Geralico, arXiv:1909.02375]

Gravitating binaries from the (classical) double copy

J. Plefka, JS, W. Wormsbecher, PRD 99, 024021 (2019); J. Plefka, C. Shi, JS, T. Wang (2019)

Simplified classical limit (compared to amplitudes) by using classical sources?
Dynamical color charge $c^{a}(\tau)=\psi^{\dagger} T^{a} \psi$ moving on an worldline $x^{\mu}(\tau)$:

$$
S_{\text {cl quark }}=-\int\left[m d \tau-\psi^{\dagger} i D_{\mu} \psi d x^{\mu}\right]
$$

$$
\equiv-\int d \tau\left[p_{\mu} u^{\mu}-i \psi^{\dagger} \dot{\psi}-\frac{\lambda}{2}\left(p^{2}-m^{2}+2 g p_{\mu} A_{a}^{\mu} c^{a}+g^{2} A_{a}^{\mu} A_{b \mu} c^{a} c^{b}\right)\right]
$$

Auxiliary field ψ minimally coupled, $\quad D_{\mu}=\partial_{\mu}-i g A_{\mu}^{a} T^{a}, \quad\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c}$
Take 2 "quarks", integrate out A^{μ} \& Bern-Carrasco-Johansson double copy:

Gravitating binaries from the (classical) double copy

J. Plefka, JS, W. Wormsbecher, PRD 99, 024021 (2019); J. Plefka, C. Shi, JS, T. Wang (2019)

Simplified classical limit (compared to amplitudes) by using classical sources?
Dynamical color charge $c^{a}(\tau)=\psi^{\dagger} T^{a} \psi$ moving on an worldline $x^{\mu}(\tau)$:

$$
\begin{gathered}
S_{\text {cl quark }}=-\int\left[m d \tau-\psi^{\dagger} i D_{\mu} \psi d x^{\mu}\right] \\
\equiv-\int d \tau\left[p_{\mu} u^{\mu}-i \psi^{\dagger} \dot{\psi}-\frac{\lambda}{2}\left(p^{2}-m^{2}+2 g p_{\mu} A_{a}^{\mu} c^{a}+g^{2} A_{a}^{\mu} A_{b \mu} c^{a} c^{b}\right)\right]
\end{gathered}
$$

Auxiliary field ψ minimally coupled, $\quad D_{\mu}=\partial_{\mu}-i g A_{\mu}^{a} T^{a}, \quad\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c}$
Take 2 "quarks", integrate out A^{μ} \& Bern-Carrasco-Johansson double copy:

$$
e^{i S_{\text {eff, }, \text { M }}} \sim \sum_{i \in \text { cubic }} \int \frac{C_{i} N_{i}}{D_{i}} \Rightarrow e^{i S_{\text {eff.gravily }}} \sim \sum_{i \in \text { cubbic }} \int \frac{N_{i} N_{i}}{D_{i}}
$$

C_{i} : color structure $\quad N_{i}$: kinematic numerator $\quad D_{i}$: propagators $c_{i} \pm c_{j} \pm c_{k}=0 \quad \leftrightarrow \quad n_{i} \pm n_{j} \pm n_{k}=0 \quad$ color-kinematics duality

Gravitating binaries from the (classical) double copy II

Results:

- $S_{\text {eff,gravity }}$ is correct at NLO.
[J. Plefka, JS, W. Wormsbecher, PRD 99, 024021 (2019)]
- Disagreement with known results in scalar-tensor theory at NNLO \rightarrow breakdown of the proposed double copy
[J. Plefka, C. Shi, JS, T. Wang, arXiv:1906.05875]

Further literature:

Balachandran etal, PRD 15 (1977) 2308
R. Monteiro, D. O'Connell, and C. D. White, JHEP12, 056 (2014)
A. Luna, etal. JHEP06, 023 (2016)
W. D. Goldberger, A. K. Ridgway, PRD 95 (2017) 125010; PRD 97 (2018) 085019
C. H. Shen, JHEP11, 162(2018)
A. Luna, I. Nicholson, D. O'Connell, C. D. White, JHEP03, 044 (2018)
H. Johansson, A. Ochirov, JHEP 1909 (2019) 040

Theoretical challenges

- Make sense of amplitudes involving SM particles + BHs + gravitons \rightarrow include BH absorption (+decay?)
- Radiation modes from amplitudes (at high orders)
- Tidal effects, oscillation modes
 \rightarrow spectroscopy
- QFT methods for self-force/small mass ratio approximation \rightarrow all orders in the coupling: "nonperturbative" !
[C. R. Galley, B. L. Hu, PRD 79 (2009)]
- The classical "piece" of an amplitude recent papers by: Bjerrum-Bohr, Cheung, O'Connell, Damgaard, Festuccia, Guevara, Kosower, Maybee, Ochirov, Planté, Rothstein, Solon, Vanhove, Vines, ...
- Skipping ugly gauge dependent potentials for waveform models? scattering \leftrightarrow energy levels \leftrightarrow waveform model ?

