Fundamental Aspects of Asymptotic Safety

Frank Saueressig

Research Institute for Mathematics, Astrophysics and Particle Physics Radboud University Nijmegen

L. Bosma, B. Knorr, F.S., Phys. Rev. Lett. 123 (2019)101301 (Editor's suggestion) B. Knorr, C. Ripken, F.S., arXiv:1907.02903

> DESY Theory Workshop Hamburg, September 26th, 2019

Outline

- Introduction and Motivation
- Form factors structural aspects and computational remarks
- Results: gravitational propagator for transverse-traceless modes
- Application: Quantum corrections to the gravitational potential
- Summary and Outlook

General Relativity

Einstein's equations

$$\underbrace{R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R + \Lambda g_{\mu\nu}}_{\text{dynamics of spacetime}} = \underbrace{8 \pi G_N T_{\mu\nu}}_{\text{matter}}$$

experimentally well-tested in the weak gravity regime

- bending of light rays in the gravitational field
- gravitational redshift
- detection of gravitational waves

Black Holes and Spacetime Singularities

Schwarzschild solution

$$ds^{2} = -\left(1 - \frac{2GM}{r}\right)dt^{2} + \left(1 - \frac{2GM}{r}\right)^{-1}dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta \, d\phi^{2})$$

• curvature singularity at r = 0

basic objective of quantum gravity

understand gravity under extreme conditions - singularities

Quantum Gravity from the Reuter fixed points

gravity at high energy is controlled by non-Gaussian RG fixed point

[scholarpedia '13]

- 2 classes of RG trajectories:
 - \circ relevant = end at fixed point in UV
 - \circ irrelevant = go somewhere else...
- theory ending at the fixed point is free of unphysical UV divergences
- predictive power:
 - number of relevant directions <=> free parameters (experimental input)

Wetterich Equation for Gravity

C. Wetterich, Phys. Lett. **B301** (1993) 90 T. Morris, Int. J. Mod. Phys. A9 (1994) 24110 M. Reuter, Phys. Rev. D **57** (1998) 971

central idea: integrate out quantum fluctuations shell-by-shell in momentum-space

implementation: flow equation for effective average action Γ_k :

$$\partial_t \Gamma_k[h_{\mu\nu}; \bar{g}_{\mu\nu}] = \frac{1}{2} \operatorname{Tr} \left[\left(\Gamma_k^{(2)} + \mathcal{R}_k \right)^{-1} \partial_t \mathcal{R}_k \right]$$

- depends on two arguments $h_{\mu
 u}, \bar{g}_{\mu
 u}$
- effective action Γ is recovered for k = 0
- non-trivial fixed points for theories involving gravity:
 - well-established for 4-dimensional gravity
 - gravity-matter systems:

fixed points with more predictive power than the standard model

Open Questions

- exact matter content supporting asymptotic safety?
- number of free parameters?
- Iow-energy physics compatible with observations?
- degrees of freedom associated with the NGFP?
- unitarity?

Open Questions

- exact matter-content supporting asymptotic safety?
- number of free parameters?
- Iow-energy physics compatible with observations?
- degrees of freedom associated with the NGFP?
- unitarity?

Investigation method:

- derivative expansion of Γ_k
- derivative expansion fails

Derivative expansion of $\Gamma_k^{\text{grav}}[g]$

R^8	$C_{\mu\nu\rho\sigma}\Delta^6 C^{\mu\nu\rho\sigma}$	Einste	ein-Hilbert truncation
R^7	$C_{\mu\nu\rho\sigma}\Delta^5 C^{\mu\nu\rho\sigma}$		
R^6	$C_{\mu\nu\rho\sigma}\Delta^4 C^{\mu\nu\rho\sigma}$		
R^5	$C_{\mu\nu\rho\sigma}\Delta^3 C^{\mu\nu\rho\sigma}$		
R^4	$C_{\mu\nu\rho\sigma}\Delta^2 C^{\mu\nu\rho\sigma}$		
R^3	$C_{\mu\nu\rho\sigma}\Delta C^{\mu\nu\rho\sigma}$	$R \Delta R$	+ 5 more
R^2	$C_{\mu u ho\sigma}C^{\mu u ho\sigma}$	$R_{\mu u}R^{\mu u}$	
R			

Derivative expansion of $\Gamma_k^{\text{grav}}[g]$

÷	÷
R^8	$C_{\mu\nu\rho\sigma}\Delta^6 C^{\mu\nu\rho\sigma}$
R^7	$C_{\mu\nu\rho\sigma}\Delta^5 C^{\mu\nu\rho\sigma}$
R^6	$C_{\mu\nu\rho\sigma}\Delta^4 C^{\mu\nu\rho\sigma}$
R^5	$C_{\mu\nu\rho\sigma}\Delta^3 C^{\mu\nu\rho\sigma}$
R^4	$C_{\mu\nu\rho\sigma}\Delta^2 C^{\mu\nu\rho\sigma}$
R^3	$C_{\mu\nu\rho\sigma}\Delta C^{\mu\nu\rho\sigma}$
R^2	$C_{\mu u ho\sigma}C^{\mu u ho\sigma}$
R	
1	

Einstein-Hilbert truncation

$C \square^n C$ -truncation

 $R_{\mu\nu}R^{\mu\nu}$

Derivative expansion of $\Gamma_k^{\text{grav}}[g]$

Open Questions

- exact matter-content supporting asymptotic safety?
- number of free parameters?
- Iow-energy physics compatible with observations?
- degrees of freedom associated with the NGFP?
- unitarity?

Investigation method:

- derivative expansion of Γ_k
- derivative expansion fails

derivative expansion \implies curvature expansion keeping derivatives

A. Codello and O. Zanusso, Math. Phys. **54** (2013) 013513 S. A. Franchino-Viñas, T. de Paula Netto, I. L. Shapiro and O. Zanusso, Phys. Lett. B **790** (2019) 229

Form Factors

Diffeomorphism-invariant Form Factors for Gravity

form factors \iff momentum-dependent interactions in the effective action

2 form factors at second order in the curvature:

$$\Gamma_{k}^{\mathrm{C}}[g] = \frac{1}{16\pi G_{k}} \int \mathrm{d}^{d}x \sqrt{g} \, C_{\mu\nu\rho\sigma} \, W_{k}^{\mathrm{C}}(\Delta) \, C^{\mu\nu\rho\sigma}$$
$$\Gamma_{k}^{\mathrm{R}}[g] = \frac{1}{16\pi G_{k}} \int \mathrm{d}^{d}x \sqrt{g} \, R \, W_{k}^{\mathrm{R}}(\Delta) \, R \,,$$

,

determine gravitational propagators in flat space

- working assumption: $W_k(\Delta)$ has representation as Laplace transform
 - allows to eliminate a third structure function via

$$\int d^d x \sqrt{g} \left[R^{\rho \sigma \mu \nu} \Delta^n R_{\rho \sigma \mu \nu} - 4 R^{\mu \nu} \Delta^n R_{\mu \nu} + R \Delta^n R \right] = \mathcal{O}(R^3), n \ge 1$$

Flow Equations for Form Factors

approximation of Γ_k	structure of RG flow	fixed points
finite number of \mathcal{O}_i	ODEs	algebraic
field-dependent functions $f(R_1, \cdots, R_n; t)$	PDEs ($n + 1$ var.)	PDEs (n var.)
momentum-dependent form factors $f(p_1, \cdots, p_n; t)$	IDEs ($n+1$ var.)	IDEs (n var.)

- ordinary differential equation (ODE)
- partial differential equation (PDE)
- integro-differential equation (IDE)

Computing Form Factors

technical compendium: B. Knorr, C. Ripken and F.S., arXiv:1907.02903

The C^2 -Form Factor

ansatz

$$\Gamma_k^{\text{grav}} = \frac{1}{16\pi G_k} \int d^4x \sqrt{g} \Big[2\Lambda_k - R + C_{\mu\nu\rho\sigma} W_k(\Delta) C^{\mu\nu\rho\sigma} \Big]$$

• $W_k(\Delta)$ gives corrections to transverse-traceless propagator

computing the flow:

- G_k and Λ_k from the Einstein-Hilbert truncation
 - neglects back-reaction of form factor in the TT-propagator
- flow of $W_k(\Delta/k^2)$ in the conformally reduced approximation

$$g_{\mu\nu} = \left(1 + \frac{1}{4}h\right)\hat{g}_{\mu\nu}$$

Flow Equation for the Form Factor

dimensionless form factor: $w(q^2) \equiv k^{-2} W_k(\Delta/k^2)$

$$\begin{split} k\partial_k w(q^2) &= (2+\eta_N)w(q^2) + 2q^2 w'(q^2) \\ &+ \frac{g}{24\pi} \int_0^{\frac{1}{4}} \mathrm{d} u \, (1-4u)^{\frac{3}{2}} \frac{(2-\eta_N)R(uq^2) - 2uq^2 R'(uq^2)}{uq^2 + R(uq^2) + \mu} \\ &+ \frac{16g}{3\pi^2} \int_0^\infty \mathrm{d} p \int_{-1}^1 \mathrm{d} x \, p^3 \sqrt{1-x^2} \frac{(2-\eta_N)R(p^2) - 2p^2 R'(p^2)}{(p^2 + R(p^2) + \mu)^2} \\ &\left[\frac{1}{8} \left(w(p^2 + 2pqx + q^2) - w(q^2) \right) \right. \\ &+ \frac{2q^4 + 4(q^2 - p^2)(pqx) + p^2 q^2(7 - 6x^2)}{16(p^2 + 2pqx)^2} \left(w(p^2 + 2pqx + q^2) - w(q^2) \right) \\ &+ \frac{3p^4 - 2q^4 + 22p^2(pqx) - 5p^2 q^2(1 - 6x^2)}{16(p^2 + 2pqx)} w'(q^2) \right]. \end{split}$$

- integro-differential equation requires knowing w(x) on positive real axis
- linear equation ($w(q^2)$ does not enter the conformal propagator)

The Form Factor

solving fixed point equation with pseudo-spectral methods:

• w_{∞} undetermined constant (lifted in full computation)

• expansion: $w_*^{\text{fit}}(q^2)$ is an infinite power series in q^2 \implies avoids Ostrogradski instability

Remark on the vertex expansion

P. Dona, A. Eichhorn and R. Percacci, Phys. Rev. D 89 (2014) 084035 N. Christiansen, B. Knorr, J. Meibohm, J. M. Pawlowski, M. Reichert, Phys. Rev. D 92 (2015) 121501 A. Eichhorn, P. Labus, J. M. Pawlowski, M. Reichert, SciPost Phys. 5 (2018) 031

idea: expand Γ_k in fluctuations around flat Minkowski space

vertex-expansion for gravity coupled to scalar matter:

• 1 form factor for the kinetic term

$$\Gamma_k^{\rm s,kin} = \frac{1}{2} \int \mathrm{d}^d x \, \phi \, f_k^{(\phi\phi)}(-\partial^2) \, \phi$$

• 4 form factors at $\mathcal{O}(h)$:

$$\Gamma_{k}|_{h\phi\phi} = \int \mathrm{d}^{d}x \left[f_{(\bar{g})}^{(h\phi\phi)} \,\delta^{\mu\nu} + f_{(11)}^{(h\phi\phi)} \,\partial^{\mu}_{1} \partial^{\nu}_{1} + f_{(22)}^{(h\phi\phi)} \,\partial^{\mu}_{2} \partial^{\nu}_{2} + f_{(12)}^{(h\phi\phi)} \,\partial^{\mu}_{1} \partial^{\nu}_{2} \right] h_{\mu\nu}\phi\phi \,.$$

Remark on the vertex expansion

P. Dona, A. Eichhorn and R. Percacci, Phys. Rev. D 89 (2014) 084035 N. Christiansen, B. Knorr, J. Meibohm, J. M. Pawlowski, M. Reichert, Phys. Rev. D 92 (2015) 121501 A. Eichhorn, P. Labus, J. M. Pawlowski, M. Reichert, SciPost Phys. 5 (2018) 031

idea: expand Γ_k in fluctuations around flat Minkowski space

vertex-expansion for gravity coupled to scalar matter:

• 1 form factor for the kinetic term

$$\Gamma_k^{\rm s,kin} = \frac{1}{2} \int \mathrm{d}^d x \, \phi \, f_k^{(\phi\phi)}(-\partial^2) \, \phi$$

• 4 form factors at $\mathcal{O}(h)$:

$$\Gamma_{k}|_{h\phi\phi} = \int \mathrm{d}^{d}x \left[f_{(\bar{g})}^{(h\phi\phi)} \,\delta^{\mu\nu} + f_{(11)}^{(h\phi\phi)} \,\partial^{\mu}_{1} \partial^{\nu}_{1} + f_{(22)}^{(h\phi\phi)} \,\partial^{\mu}_{2} \partial^{\nu}_{2} + f_{(12)}^{(h\phi\phi)} \,\partial^{\mu}_{1} \partial^{\nu}_{2} \right] h_{\mu\nu}\phi\phi \,.$$

Conceptually:

Application

The Newtonian Gravitational Potential

Newtonian Gravitational Potential from Field Theory

J. F. Donoghue, Phys. Rev. D50 (1994) 3874

non-relativistic graviton-mediated interaction of two scalar fields: (masses m_1 , m_2):

$$V(\mathbf{r}) = -\frac{1}{2m_1} \frac{1}{2m_2} \int \frac{d^3 \mathbf{q}}{(2\pi)^3} e^{i\mathbf{q}\cdot\mathbf{r}} \mathcal{M} = -\frac{Gm_1m_2}{\mathbf{r}}$$

classical scattering amplitude ($q = (0, \mathbf{q})$)

 $\mathcal{M} = 16\pi G m_1^2 m_2^2 \mathcal{G}(\mathbf{q}^2) \quad , \qquad \mathcal{G}_{\text{classical}}(\mathbf{q}^2) = \underbrace{\mathbf{q}^{-2}}_{\text{Einstein-Hilbert}}$

Newtonian Gravitational Potential from Field Theory

J. F. Donoghue, Phys. Rev. D50 (1994) 3874

non-relativistic graviton-mediated interaction of two scalar fields: (masses m_1 , m_2):

effective field theory corrections:

$$V(\mathbf{r}) = -\frac{G m_1 m_2}{\mathbf{r}} \left[1 + a \frac{G(m_1 + m_2)}{\mathbf{r}c^2} + b \frac{G\hbar}{\mathbf{r}^2 c^3} \right]$$

with

$$a = -1$$
, $b = -\frac{127}{30\pi^2}$

Newtonian Potential from Asymptotic Safety

Strategy:

restrict scattering amplitude to transverse-traceless contribution

• replace
$$\mathcal{G}_{\text{classical}}^{\text{TT}}(\mathbf{q}^2) \Longrightarrow \mathcal{G}_{\text{non-perturbative}}^{\text{TT}}(\mathbf{q}^2)$$

 $V_{\rm quantum}^{\rm TT}({\bf r})$ remains finite as ${\bf r} \rightarrow 0$

Summary and Outlook

Summary ...

form factors:

- highly relevant for the dynamics
- gravity: Newtonian potential rendered finite

propagator avoids the Ostrogradski-instabilities

• gravity-matter: scalar propagator agrees with vertex-expansion results

N. Christiansen, B. Knorr, J. Meibohm, J. M. Pawlowski, M. Reichert, Phys. Rev. D **92** (2015) 121501 A. Eichhorn, P. Labus, J. M. Pawlowski, M. Reichert, SciPost Phys. **5** (2018) 031

Summary ...

form factors:

- highly relevant for the dynamics
- gravity: Newtonian potential rendered finite

propagator avoids the Ostrogradski-instabilities

• gravity-matter: scalar propagator agrees with vertex-expansion results

N. Christiansen, B. Knorr, J. Meibohm, J. M. Pawlowski, M. Reichert, Phys. Rev. D **92** (2015) 121501 A. Eichhorn, P. Labus, J. M. Pawlowski, M. Reichert, SciPost Phys. **5** (2018) 031

asymptotically safe gravity + standard model matter:

- UV-completion for scenarios with no new physics below Planck scale
- predictions for standard model parameters

A. Eichhorn, Front. Astron. Space Sci. 5 (2019) 47 talk by Marc Schiffer this afternoon

Summary and Outlook

form factors:

- highly relevant for the dynamics
- gravity: Newtonian potential rendered finite

propagator avoids the Ostrogradski-instabilities

gravity-matter: scalar propagator agrees with vertex-expansion results

N. Christiansen, B. Knorr, J. Meibohm, J. M. Pawlowski, M. Reichert, Phys. Rev. D **92** (2015) 121501 A. Eichhorn, P. Labus, J. M. Pawlowski, M. Reichert, SciPost Phys. **5** (2018) 031

asymptotically safe gravity + standard model matter:

- UV-completion for scenarios with no new physics below Planck scale
- predictions for standard model parameters

A. Eichhorn, Front. Astron. Space Sci. 5 (2019) 47 talk by Marc Schiffer this afternoon

still a lot to do

prospects warrant this investment

Introductions to Asymptotic Safety: available now!

World Scientific

100 Years of General Relativity-Vol.3

AN INTRODUCTION TO COVARIANT QUANTUM GRAVITY AND ASYMPTOTIC SAFETY

Roberto Percacci

Percacci '17

Quantum Gravity and the Functional Renormalization Group

The Road towards Asymptotic Safety

MARTIN REUTER AND FRANK SAUERESSIG

CAMBRIDGI MONOGRAPHS ON MATHEMATICAL PRYSICS

Reuter, Saueressig '19

Introductions to Asymptotic Safety: available now!

World Scientific

100 Years of General Relativity-Vol.3

AN INTRODUCTION TO COVARIANT QUANTUM GRAVITY AND ASYMPTOTIC SAFETY

Roberto Percacci

Percacci '17

Quantum Gravity and the Functional Renormalization Group

The Road towards Asymptotic Safety

MARTIN REUTER AND FRANK SAUERESSIG

CAMBRIDGI MONOGRAPHS ON MATHEMATICAL PRYSICS

Reuter, Saueressig '19