Scattering Amplitudes: Spinning BH vs Soft Theorems

Alfredo Guevara (Perimeter Institute)

1903.12419, 1908.11349 with F. Bautista

Quantum Field Theory Meets Gravity, September 26 2019

See also - 1705.10262 w. F. Cachazo - 1706.02314 -1812.06895 , 1906.10071 w A. Ochirov & J. Vines

GW Catalogue (from LIGO Collaboration '18)

Event	m_1/M_{\odot}	m_2/M_{\odot}	\mathcal{M}/M_{\odot}	$\chi_{ m eff}$	$M_{\rm f}/{\rm M}_{\odot}$	af	$E_{\rm rad}/({\rm M}_{\odot}c^2)$	$\ell_{\text{peak}}/(\text{erg s}^{-1})$	d_L/Mpc	z	$\Delta\Omega/deg^2$
GW150914	35.6+4.8	30.6+3.0	28.6+1.6	$-0.01\substack{+0.12\\-0.13}$	$63.1^{+3.3}_{-3.0}$	$0.69^{+0.05}_{-0.04}$	$3.1^{+0.4}_{-0.4}$	$3.6^{+0.4}_{-0.4} imes 10^{56}$	430+150	$0.09^{+0.03}_{-0.03}$	180
GW151012	23.3+14.0	$13.6^{+4.1}_{-4.8}$	$15.2^{+2.0}_{-1.1}$	$0.04^{+0.28}_{-0.19}$	$35.7^{+9.9}_{-3.8}$	$0.67^{+0.13}_{-0.11}$	$1.5^{+0.5}_{-0.5}$	$3.2^{+0.8}_{-1.7} imes 10^{56}$	1060^{+540}_{-480}	$0.21\substack{+0.09\\-0.09}$	1555
GW151226	$13.7^{+8.8}_{-3.2}$	$7.7^{+2.2}_{-2.6}$	$8.9^{+0.3}_{-0.3}$	$0.18^{+0.20}_{-0.12}$	20.5+6.4	$0.74^{+0.07}_{-0.05}$	$1.0^{+0.1}_{-0.2}$	$3.4^{+0.7}_{-1.7} imes 10^{56}$	440+180	$0.09^{+0.04}_{-0.04}$	1033
GW170104	31.0+7.2	$20.1^{+4.9}_{-4.5}$	$21.5^{+2.1}_{-1.7}$	$-0.04^{+0.17}_{-0.20}$	$49.1^{+5.2}_{-3.9}$	$0.66^{+0.08}_{-0.10}$	$2.2^{+0.5}_{-0.5}$	$3.3^{+0.6}_{-0.9} imes 10^{56}$	960 ⁺⁴³⁰ -410	$0.19\substack{+0.07\\-0.08}$	924
GW170608	10.9+5.3	7.6+1.3	7.9+0.2	$0.03^{+0.19}_{-0.07}$	$17.8^{+3.2}_{-0.7}$	$0.69^{+0.04}_{-0.04}$	0.9+0.05	$3.5^{+0.4}_{-1.3} imes 10^{56}$	320+120	$0.07\substack{+0.02 \\ -0.02}$	396
GW170729	50.6+16.6	$34.3^{+9.1}_{-10.1}$	35.7+6.5	$0.36^{+0.21}_{-0.25}$	$80.3^{+14.6}_{-10.2}$	$0.81\substack{+0.07 \\ -0.13}$	$4.8^{+1.7}_{-1.7}$	$4.2^{+0.9}_{-1.5}\times10^{56}$	2750^{+1350}_{-1320}	$0.48^{+0.19}_{-0.20}$	1033
GW170809	$35.2^{+8.3}_{-6.0}$	23.8+5.2	25.0+2.1	$0.07^{+0.16}_{-0.16}$	56.4+5.2	$0.70^{+0.08}_{-0.09}$	$2.7^{+0.6}_{-0.6}$	$3.5^{+0.6}_{-0.9}\times10^{56}$	990 ⁺³²⁰ -380	$0.20^{+0.05}_{-0.07}$	340
GW170814	$30.7^{+5.7}_{-3.0}$	25.3+2.9	24.2+1.4	$0.07^{+0.12}_{-0.11}$	53.4+3.2	$0.72^{+0.07}_{-0.05}$	$2.7^{+0.4}_{-0.3}$	$3.7^{+0.4}_{-0.5} \times 10^{56}$	580 ⁺¹⁶⁰ -210	$0.12\substack{+0.03 \\ -0.04}$	87
GW170817	$1.46^{+0.12}_{-0.10}$	$1.27^{+0.09}_{-0.09}$	$1.186\substack{+0.001\\-0.001}$	$0.00^{+0.02}_{-0.01}$	≤ 2.8	≤ 0.89	≥ 0.04	$\geq 0.1 \times 10^{56}$	40+10	$0.01\substack{+0.00\\-0.00}$	16
GW170818	35.5+7.5	$26.8^{+4.3}_{-5.2}$	$26.7^{+2.1}_{-1.7}$	$-0.09^{+0.18}_{-0.21}$	59.8 ^{+4.8} -3.8	$0.67^{+0.07}_{-0.08}$	$2.7^{+0.5}_{-0.5}$	$3.4^{+0.5}_{-0.7} imes 10^{56}$	1020^{+430}_{-360}	$0.20^{+0.07}_{-0.07}$	39
GW170823	$39.6^{+10.0}_{-6.6}$	29.4+6.3	$29.3^{+4.2}_{-3.2}$	$0.08^{+0.20}_{-0.22}$	$65.6^{+9.4}_{-6.6}$	$0.71\substack{+0.08\\-0.10}$	$3.3^{+0.9}_{-0.8}$	$3.6^{+0.6}_{-0.9}\times10^{56}$	1850^{+840}_{-840}	$0.34\substack{+0.13\\-0.14}$	1651

 As more precise measurements will take place in LISA, more accurate templates will be needed! =>We can use modern methods in QFT! (for inspiral phase)

Some problems for (analytic) theorists: (From Bern's talk)

- 1. Spin.
- 2. Finite size effects.
- 3. New physics effects.
- 4. Radiation.

→ 5. High orders in perturbation theory. ←

Donoghue '93; Bjerrum-Bohr, Donoghue, Holstein '03; + Plante, Vanhove '15; Neil, Rothstein '13; Cachazo, Guevara '17; Bjerrum-Bohr, Damgaard, Festuccia, Planté, Vanhove '18; Plefka, Steinhoff, Wormsbecher '18; Cheung, Rothstein, Solon '18; Bern, Cheung, Roiban, Shen, Solon, Zeng '19

Some problems for (analytic) theorists: (From Bern's talk)

- ➡ 1. Spin. Vaidya '14; Guevara '17; Chung, Huang, Kim, Lee '18
 - 2. Finite size effects.
 - 3. New physics effects.
- → **4. Radiation.** Goldberger, Ridgway '17; Luna et al. '17; Shen '18; Kosower et al. '18....
- → 5. High orders in perturbation theory. ←

 Donoghue '93; Bjerrum-Bohr, Donoghue, Holstein '03; + Plante, Vanhove '15; Neil, Rothstein '13; Cachazo, Guevara '17; Bjerrum-Bohr, Damgaard, Festuccia, Planté, Vanhove '18; Plefka, Steinhoff, Wormsbecher '18; Cheung, Rothstein, Solon '18; Bern, Cheung, Roiban, Shen, Solon, Zeng '19....

Soft Theorem

- Massive body accelerating in a finite interval of time, point particle approximation.
- At $r \to \infty$ we can drop Coulomb modes to get

$$T_{\mu
u}(k)=\sqrt{8\pi G}\left(rac{p_{1\mu}p_{1
u}}{p_1\cdot k+i\epsilon}-rac{p_{2\mu}p_{2
u}}{p_2\cdot k-i\epsilon}
ight)+\mathcal{O}(\omega^0)$$

which corresponds to a classical instance of the Soft Factor [Weinberg '65, Yennie, Frautschi, Suura '61] (see also Strominger et al.)

Soft Theorem

- Massive body accelerating in a finite interval of time, point particle approximation
- At $r \to \infty$ we can drop Coulomb modes to get

$$T_{\mu
u}(k)=\sqrt{8\pi G}\left(rac{p_{1\mu}p_{1
u}}{p_1\cdot k+i\epsilon}-rac{p_{2\mu}p_{2
u}}{p_2\cdot k-i\epsilon}
ight)+\mathcal{O}(\omega^0)$$

which corresponds to a classical instance of the Soft Factor [Weinberg '65, Yennie, Frautschi, Suura '61] (see also Strominger et al.)

• Large-wavelength behaviour is **universal**. Independent of the acceleration or internal structure (**spin**)

$$\left(\frac{p_{1\mu}p_{1\nu}}{p_{1}\cdot q + i\epsilon} - \frac{p_{2\mu}p_{2\nu}}{p_{2}\cdot q - i\epsilon} \right)_{p_{2} = p_{1} + q} = p_{1\mu}p_{1\nu} \,\bar{\delta}(p_{1}\cdot q) =$$

• No support for radiation yet

$$\left(\frac{p_{1\mu}p_{1\nu}}{p_{1}\cdot q + i\epsilon} - \frac{p_{2\mu}p_{2\nu}}{p_{2}\cdot q - i\epsilon} \right)_{p_{2} = p_{1} + q} = p_{1\mu}p_{1\nu} \,\overline{\delta}(p_{1}\cdot q) =$$

- No support for radiation yet
- Still useful as (complex) building block

$$\begin{pmatrix} \frac{p_{1\mu}p_{1\nu}}{p_{1}\cdot q + i\epsilon} - \frac{p_{2\mu}p_{2\nu}}{p_{2}\cdot q - i\epsilon} \end{pmatrix}_{p_{2}=p_{1}+q} = \\ p_{1\mu}p_{1\nu} \,\overline{\delta}(p_{1}\cdot q) =$$

- No support for radiation yet
- Still useful as (complex) building block
- Unique, fixed by little group

$$\left(\frac{p_{1\mu}p_{1\nu}}{p_{1}\cdot q + i\epsilon} - \frac{p_{2\mu}p_{2\nu}}{p_{2}\cdot q - i\epsilon} \right)_{p_{2} = p_{1} + q} = p_{1\mu}p_{1\nu} \,\overline{\delta}(p_{1}\cdot q) =$$

- No support for radiation yet
- Still useful as (complex) building block
- Unique, fixed by little group
- **Double Copy** of photon vertex...

What about corrections in the graviton frequency q? Weinberg also showed that they are encoded in a multipole expansion, i.e.

Soft Expansion = Multipole Expansion

$$\begin{split} & \prod_{i=1}^{n} (p', p) \longrightarrow e(p'+p) \mathbf{1} + \left(\frac{2imp}{J}\right) \underbrace{J} \times (p'-p) + cubic \\ & (2.G.19) \end{split} \\ & \prod_{i=1}^{n} (p', p) \longrightarrow 2me + \frac{e}{m} p \cdot p' + Q_{ij}(p'-p) (p'-p) + i \left(\frac{2p}{J} - \frac{e}{m}\right) (p' \times p) \cdot \underbrace{J} + quertic \qquad (2.G.20) \end{split}$$

From Brandeis Lectures (1970)

$$\epsilon_{\mu\nu}T^{\mu\nu}(k) = (\epsilon \cdot p)^2 E_1^I \left[1 + \frac{g_s}{2} \frac{k_\mu \epsilon_\nu J^{\mu\nu}}{\epsilon \cdot p} + \omega^{(s)}_{\mu\nu\rho\sigma} \{J^{\mu\nu}, J^{\rho\sigma}\} + \ldots\right]^J E_{2,J}$$

$$\epsilon_{\mu\nu}T^{\mu\nu}(k) = (\epsilon \cdot p)^2 E_1^I [1 + \frac{g_s}{2} \frac{k_\mu \epsilon_\nu J^{\mu\nu}}{\epsilon \cdot p} + \omega^{(s)}_{\mu\nu\rho\sigma} \{J^{\mu\nu}, J^{\rho\sigma}\} + \dots]^J {}_I E_{2,J}$$

Weinberg's Soft Factor (Equivalence principle)

$$\epsilon_{\mu\nu}T^{\mu\nu}(k) = (\epsilon \cdot p)^2 E_1^I [1 + \frac{g_s}{2} \frac{k_\mu \epsilon_\nu J^{\mu\nu}}{\epsilon \cdot p} + \omega^{(s)}_{\mu\nu\rho\sigma} \{J^{\mu\nu}, J^{\rho\sigma}\} + \dots]^J {}_I E_{2,J}$$

Weinberg's Soft Factor g=1/s for QED with spin-s sources (Equivalence principle) (Belinfante Conjecture)

> g=2 for GR **always** Mathisson-Papapetrou-Dixon '70 Chung, Huang, Kim, Lee '19....

×1171

$$\epsilon_{\mu\nu}T^{\mu\nu}(k) = (\epsilon \cdot p)^{2}E_{1}^{I}[1 + \frac{g_{s}}{2} \frac{k_{\mu}\epsilon_{\nu}J^{\mu\nu}}{\epsilon \cdot p} + \omega_{\mu\nu\rho\sigma}^{(s)}\{J^{\mu\nu}, J^{\rho\sigma}\} + \dots]^{J}{}_{I}E_{2,J}$$

$$(k) = (\epsilon \cdot p)^{2}E_{1}^{I}[1 + \frac{g_{s}}{2} \frac{k_{\mu}\epsilon_{\nu}J^{\mu\nu}}{\epsilon \cdot p} + \omega_{\mu\nu\rho\sigma}^{(s)}\{J^{\mu\nu}, J^{\rho\sigma}\} + \dots]^{J}{}_{I}E_{2,J}$$

$$(k) = (\epsilon \cdot p)^{2}E_{1}^{I}[1 + \frac{g_{s}}{2} \frac{k_{\mu}\epsilon_{\nu}J^{\mu\nu}}{\epsilon \cdot p} + \omega_{\mu\nu\rho\sigma}^{(s)}\{J^{\mu\nu}, J^{\rho\sigma}\} + \dots]^{J}{}_{I}E_{2,J}$$

$$(k) = (\epsilon \cdot p)^{2}E_{1}^{I}[1 + \frac{g_{s}}{2} \frac{k_{\mu}\epsilon_{\nu}J^{\mu\nu}}{\epsilon \cdot p} + \omega_{\mu\nu\rho\sigma}^{(s)}\{J^{\mu\nu}, J^{\rho\sigma}\} + \dots]^{J}{}_{I}E_{2,J}$$

$$(k) = (\epsilon \cdot p)^{2}E_{1}^{I}[1 + \frac{g_{s}}{2} \frac{k_{\mu}\epsilon_{\nu}J^{\mu\nu}}{\epsilon \cdot p} + \omega_{\mu\nu\rho\sigma}^{(s)}\{J^{\mu\nu}, J^{\rho\sigma}\} + \dots]^{J}{}_{I}E_{2,J}$$

$$(k) = (\epsilon \cdot p)^{2}E_{1}^{I}[1 + \frac{g_{s}}{2} \frac{k_{\mu}\epsilon_{\nu}J^{\mu\nu}}{\epsilon \cdot p} + \omega_{\mu\nu\rho\sigma}^{(s)}\{J^{\mu\nu}, J^{\rho\sigma}\} + \dots]^{J}{}_{I}E_{2,J}$$

$$(k) = (\epsilon \cdot p)^{2}E_{1}^{I}[1 + \frac{g_{s}}{2} \frac{k_{\mu}\epsilon_{\nu}J^{\mu\nu}}{\epsilon \cdot p} + \omega_{\mu\nu\rho\sigma}^{(s)}\{J^{\mu\nu}, J^{\rho\sigma}\} + \dots]^{J}{}_{I}E_{2,J}$$

$$(k) = (\epsilon \cdot p)^{2}E_{1}^{I}[1 + \frac{g_{s}}{2} \frac{k_{\mu}\epsilon_{\nu}J^{\mu\nu}}{\epsilon \cdot p} + \omega_{\mu\nu\rho\sigma}^{(s)}\{J^{\mu\nu}, J^{\rho\sigma}\} + \dots]^{J}{}_{I}E_{2,J}$$

$$(k) = (\epsilon \cdot p)^{2}E_{1}^{I}[1 + \frac{g_{s}}{2} \frac{k_{\mu}\epsilon_{\nu}J^{\mu\nu}}{\epsilon \cdot p} + \omega_{\mu\nu\rho\sigma}^{(s)}\{J^{\mu\nu}, J^{\rho\sigma}\} + \dots]^{J}{}_{I}E_{2,J}$$

$$(k) = (\epsilon \cdot p)^{2}E_{1}^{I}[1 + \frac{g_{s}}{2} \frac{k_{\mu}\epsilon_{\nu}J^{\mu\nu}}{\epsilon \cdot p} + \omega_{\mu\nu}J^{\mu\nu}} + \omega_{\mu\nu}J^{\mu\nu} + \omega_{\mu\nu}J^{\mu\nu}} + \omega_{\mu\nu}J^{\mu\nu} + \omega_{\mu\nu$$

How do we fix higher multipoles?

- We can use minimal coupling amplitudes for massive higher spins. Guevara '17; Chung, Huang, Kim, Lee '18; Guevara, Ochirov, Vines '18
- We can impose **double copy** relations (GR=YM^2), e.g. using the QED dipole J to **fix** GR quadrupole J^2 and so on.... Guevara, Bautista '19; Johansson, Ochirov '19 ...

How do we fix higher multipoles?

- We can use minimal coupling amplitudes for massive higher spins. Guevara '17; Chung, Huang, Kim, Lee '18; Guevara, Ochirov, Vines '18
- We can impose **double copy** relations (GR=YM^2), e.g. using the QED dipole J to **fix** GR quadrupole J^2 and so on.... Guevara, Bautista '19; Johansson, Ochirov '19 ...

In both cases we obtain **all** intrinsic multipoles of the linearized Kerr Black Hole encoded in an effective stress-energy tensor in the form of [Vines '17, Arkani-Hamed, Huang, O'Connell '19]

$$\bar{h}_{\mu\nu}^{\text{Kerr}} = u_{\mu}u_{\nu}\left(1 - \frac{1}{2!}(a\cdot\partial)^2 + \frac{1}{4!}(a\cdot\partial)^4 - \ldots\right)\frac{4Gm}{r} + u_{(\mu}\epsilon_{\nu)\rho\alpha\beta}u^{\rho}a^{\alpha}\partial^{\beta}\left(1 - \frac{1}{3!}(a\cdot\partial)^2 + \ldots\right)\frac{4Gm}{r}.$$
 (30)

How do we fix higher multipoles?

- We can use minimal coupling amplitudes for massive higher spins. Guevara '17; Chung, Huang, Kim, Lee '18; Guevara, Ochirov, Vines '18
- We can impose **double copy** relations (GR=YM^2), e.g. using the QED dipole J to **fix** GR quadrupole J^2 and so on.... Guevara, Bautista '19; Johansson, Ochirov '19 ...

In both cases we obtain **all** intrinsic multipoles of the linearized Kerr Black Hole encoded in an effective stress-energy tensor in the form of [Vines '17, Arkani-Hamed, Huang, O'Connell '19]

$$\bar{h}_{\mu\nu}^{\text{Kerr}} = u_{\mu}u_{\nu}\left(1 - \frac{1}{2!}(a\cdot\partial)^2 + \frac{1}{4!}(a\cdot\partial)^4 - \ldots\right)\frac{4Gm}{r} + u_{(\mu}\epsilon_{\nu)\rho\alpha\beta}u^{\rho}a^{\alpha}\partial^{\beta}\left(1 - \frac{1}{3!}(a\cdot\partial)^2 + \ldots\right)\frac{4Gm}{r}.$$
 (30)

This resembles an **infinite soft theorem** in the spirit of He, Huang, Wen '14; Hamada, Shiu '18; Compère '19;

Massless Origin and Minimal Coupling

 Minimal coupling massive amplitudes are defined by imposing smooth massless limit, e.g. in the sense of Porrati, Ferrara, Telegdi '92
 Soft Factor

$$egin{aligned} A(1^h,2^{-h},h_3) &\sim \left(rac{\langle 13
angle \langle 32
angle}{\langle 12
angle}
ight)^2 \left(rac{\langle 13
angle}{\langle 23
angle}
ight)^{2h} & rac{massless limit}{" ext{compactification"}} & (\epsilon_3 \cdot p_1)^2 \langle \epsilon_1^s | \exp \left(-rac{k_{3\mu} \epsilon_{3
u}}{\epsilon_3 \cdot p_1} J_s^{\mu
u}
ight) | \epsilon_2^s
angle & m
eq 0 & m$$

Massless Origin and Minimal Coupling

Minimal coupling massive amplitudes are defined by imposing smooth massless limit,
 e.g. in the sense of Porrati, Ferrara, Telegdi '92
 Soft Factor

$$egin{aligned} A(1^h,2^{-h},h_3) &\sim \left(rac{\langle 13
angle \langle 32
angle}{\langle 12
angle}
ight)^2 \left(rac{\langle 13
angle}{\langle 23
angle}
ight)^{2h} & \hline ext{massless limit} & (\epsilon_3 \cdot p_1)^2 \langle \epsilon_1^s | \exp \left(-rac{k_{3\mu}\epsilon_{3
u}}{\epsilon_3 \cdot p_1} J_s^{\mu
u}
ight) | \epsilon_2^s
angle & m
eq 0 & m$$

- The massless 3-pt amplitude (fixed by little group) can be 1) rewritten in exponential form and 2) reinterpreted as the **massive** 3-pt amplitudes derived in Arkani-Hamed, Huang, Huang '17

Massless Origin and Minimal Coupling

- At higher multiplicity (n>3) we can apply the compactification to get the minimal coupling amplitudes with one matter line, which is (conjecturally) all we need for the classical 2-body problem. A.G., Bautista '19
- We also get exponential forms => Exponentiated soft theorems

However, because massless HS particles are inconsistent at n>3 (Cachazo, Benincasa '07) this leads to unphysical poles for spin>2. A.G., Ochirov, Vines '18, Chung, Huang, Kim '19....
 This is equivalent to state that any physical spin>2, n>3 amplitude will have 1/m singularities!

Finally, we can use the higher point amplitudes to extract observables in the 2-body problem! This includes conservative and non-conservative pieces...

Here **a** and **b** represent two different compact objects such as spinning Black Holes. See also Kosower, Maybee, O'connell '19

Thank you!

$$egin{aligned} \Omega^{IJ} &\equiv \eta^{\mu
u} e^I_\mu rac{d}{ds} e^J_
u \ S_{pp} &= \int ds igg[- \dot{x}^\mu e^I_\mu p_I + rac{1}{2} S^{IJ} \Omega_{IJ} + rac{1}{2} e \left(p^I p_I - m^2
ight) + e \lambda_I S^{IJ} p_J igg] \ S_{IJ} e^I_\mu e^J_\mu &= \epsilon_{\mu
u
ho\sigma} p^
ho a^\sigma \end{aligned}$$

+

Choosing the gauge $\epsilon_1^+ \cdot \epsilon_2^- = 0$ the Compton amplitude exponentiates up to s=2

 P_2

 P_1

 P_3

$$A_{4}^{\text{gr,s}}(p_{1}, p_{2}, k_{1}^{+}, k_{2}^{-}) = A_{4}^{\text{gr,0}} \times \exp\left(\frac{F_{\mu\nu}J^{\mu\nu}}{2\epsilon \cdot p}\right)$$

$$= \pi G^{2}E \frac{m_{b}}{2v^{4}} \frac{\partial}{\partial b} \int_{\Gamma_{\text{LS}}} \frac{dz}{2\pi i} \frac{(1-vz)^{4}}{(z^{2}-1)^{3/2}} \int \frac{d^{2}k}{2\pi |k|} \exp\left(ik \cdot \left[b-z\hat{p} \times a_{b}-\frac{z-v}{1-vz}\hat{p} \times a_{a}\right]\right)$$

$$= \pi G^{2}E \frac{m_{b}}{2v^{4}} \frac{\partial}{\partial b} \int_{\Gamma_{\text{LS}}} \frac{dz}{2\pi i} \frac{(1-vz)^{4}}{(z^{2}-1)^{3/2}} \left|b-za_{b}-\frac{z-v}{1-vz}a_{a}\right|^{-1}, \qquad (3.4)$$
(from Guevara, Ochirov, Vines '18)

- All orders in a_h . Agreement up to a_a^3 , all orders in v.
- Can be matched to effective (bounded) Hamiltonian. Siemonsen, Vines '19

Exponentiated Classical Soft Theorem

The radiation field exponentiates even for scalars! The soft theorem extends to all orders when the classical limit is taken. It should be possible to derive from this the full multipole expansion of the radiative field at leading order in G.