DESY THEORY WORKSHOP

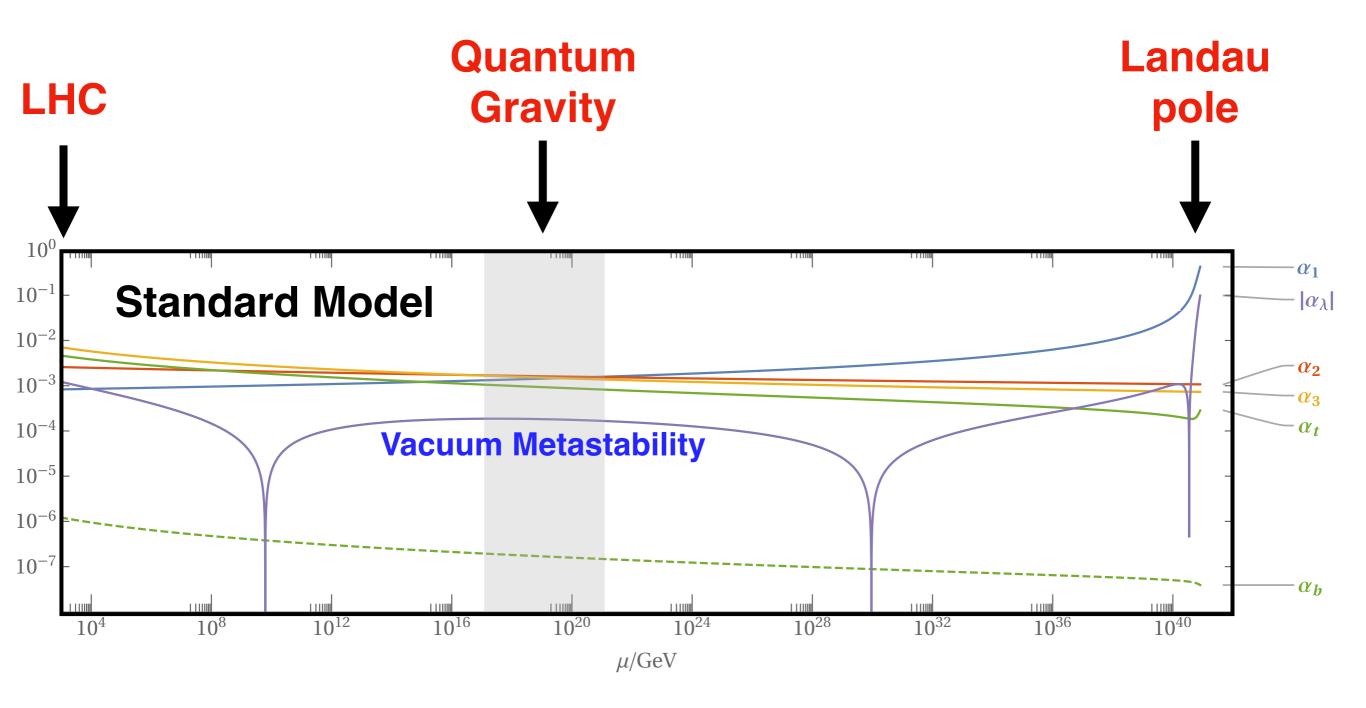
Quantum field theory meets gravity

Asymptotic safety

Daniel F Litim
US
University of Sussex

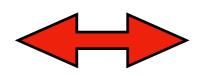
24 - 27 September 2019 DESY Hamburg, Germany

where are we?



what is asymptotic safety?

fundamental QFT

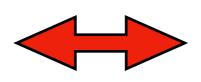


UV fixed point

Wilson '71

asymptotic freedom

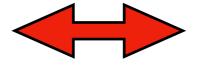
Gross, Wilzcek '73 Politzer '73



free UV fixed point

asymptotic near-freedom

Bailin, Love '74



Interacting UV fixed point

asymptotic safety w

Weinberg '

exact asymptotic safety

2+eps

infinite-N non-linear sigma infinite-NF Gross-Neveu quantum gravity

Brezin, Zinn-Justin '76 Bardeen, Lee, Shrock '76 Gawedzki, Kupiainen '85 Christensen, Duff '78 Gastmans, Kallosh, Truffin '78 Weinberg '79

3d

infinite-N scalars infinite-NF Gross-Neveu

Pisarski '82 Bardeen, Moshe, Bander '84

Rosenstein, War, Park' 89 de Calan, Faria da Veiga, Magnen, de Seneor '91

4d gauge + matter

Litim, Sannino '14 Bond, Litim '16, '17, '18

4d quantum gravity

Reuter '96 Litim '02

•

asymptotic safety in 4d

4d QFTs

fields

vectors A_{μ}^a , fermions ψ_I , scalars ϕ^A

path integral

$$Z[J] = \exp -i \int d^4x (L + L_{gf} + L_{gh} + J^i \Phi_i)$$

action

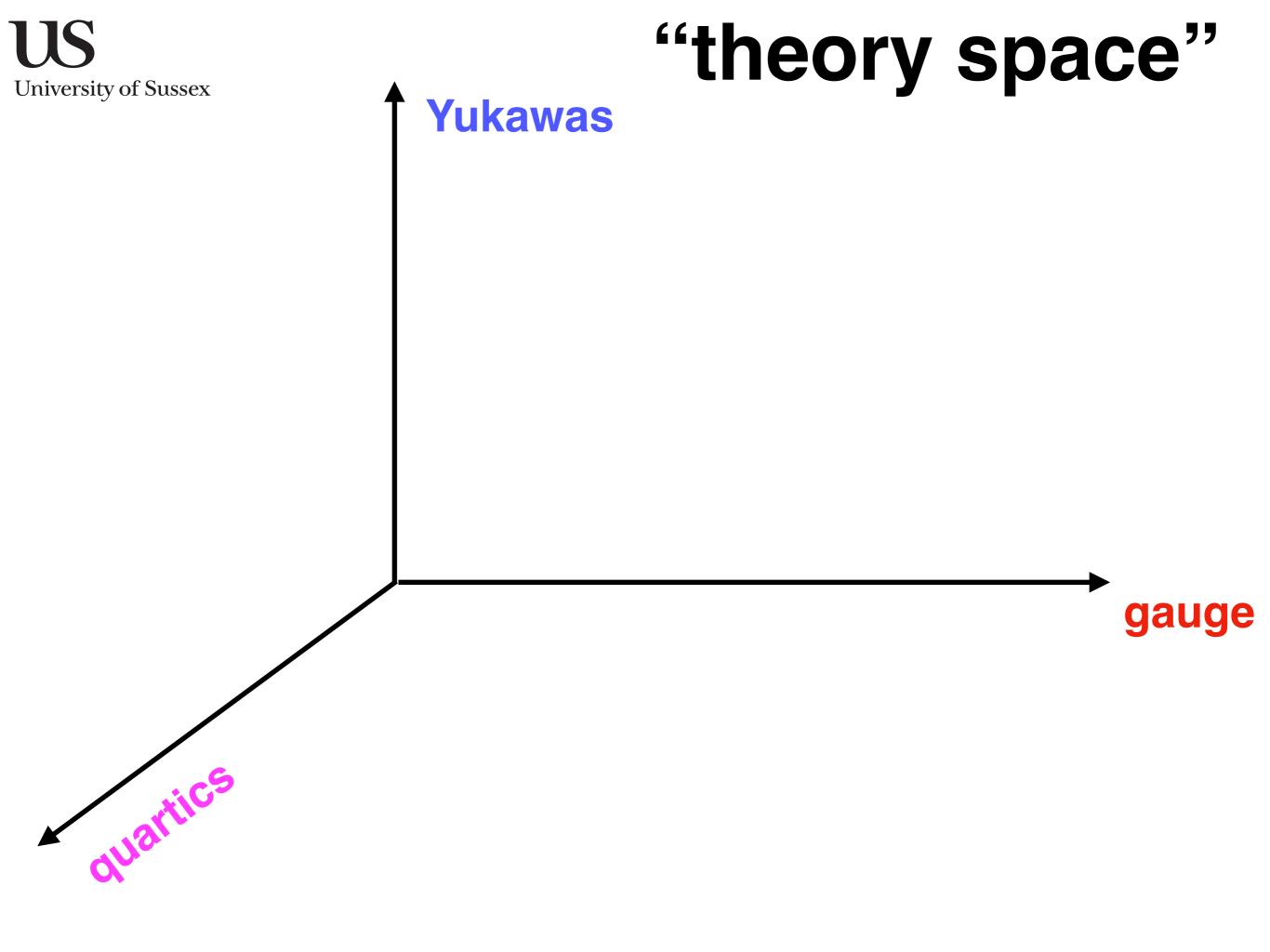
$$L = \frac{1}{4g_a^2} \text{Tr} F_{\mu\nu}^a F_a^{\mu\nu} + i\psi_I \not\!\!D \psi_I + \frac{1}{2} (D_\mu \phi^A)^2$$

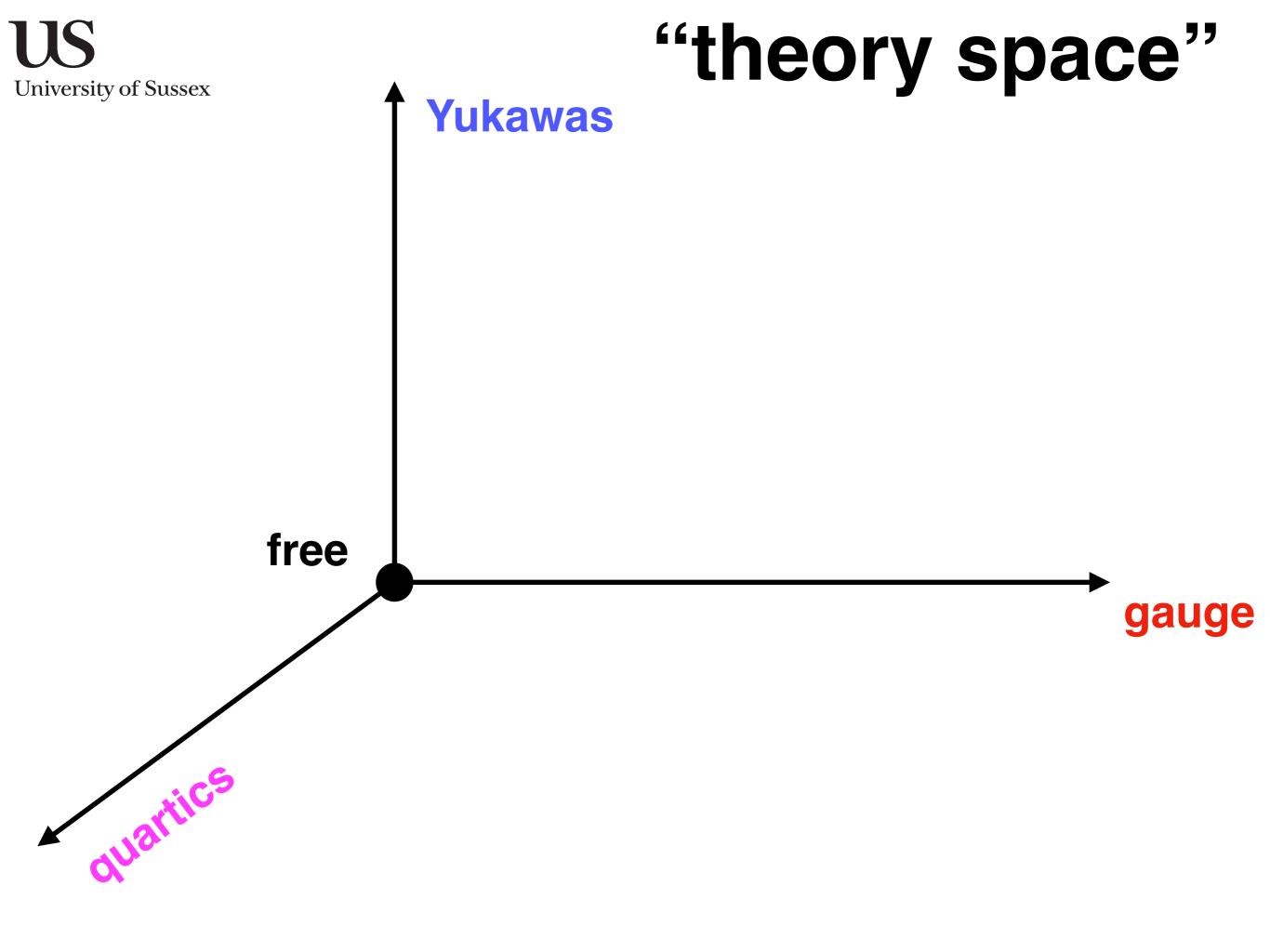
gauge

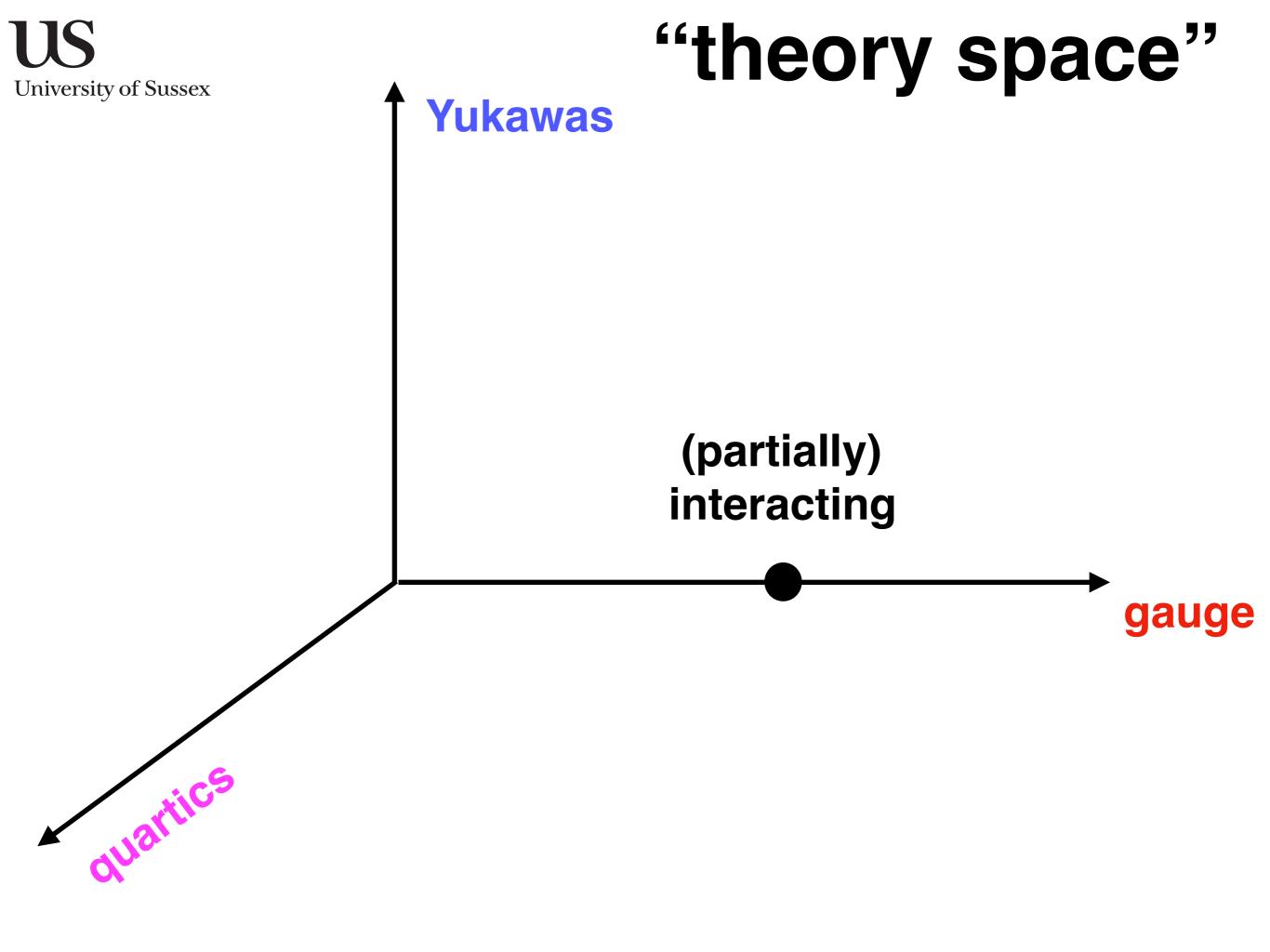
 $+\frac{1}{2}Y^{A}_{IJ}\phi^{A}\psi_{I}\xi\psi_{J}+\frac{1}{4!}\lambda_{ABCD}\phi^{A}\phi^{B}\phi^{C}\phi^{D}$

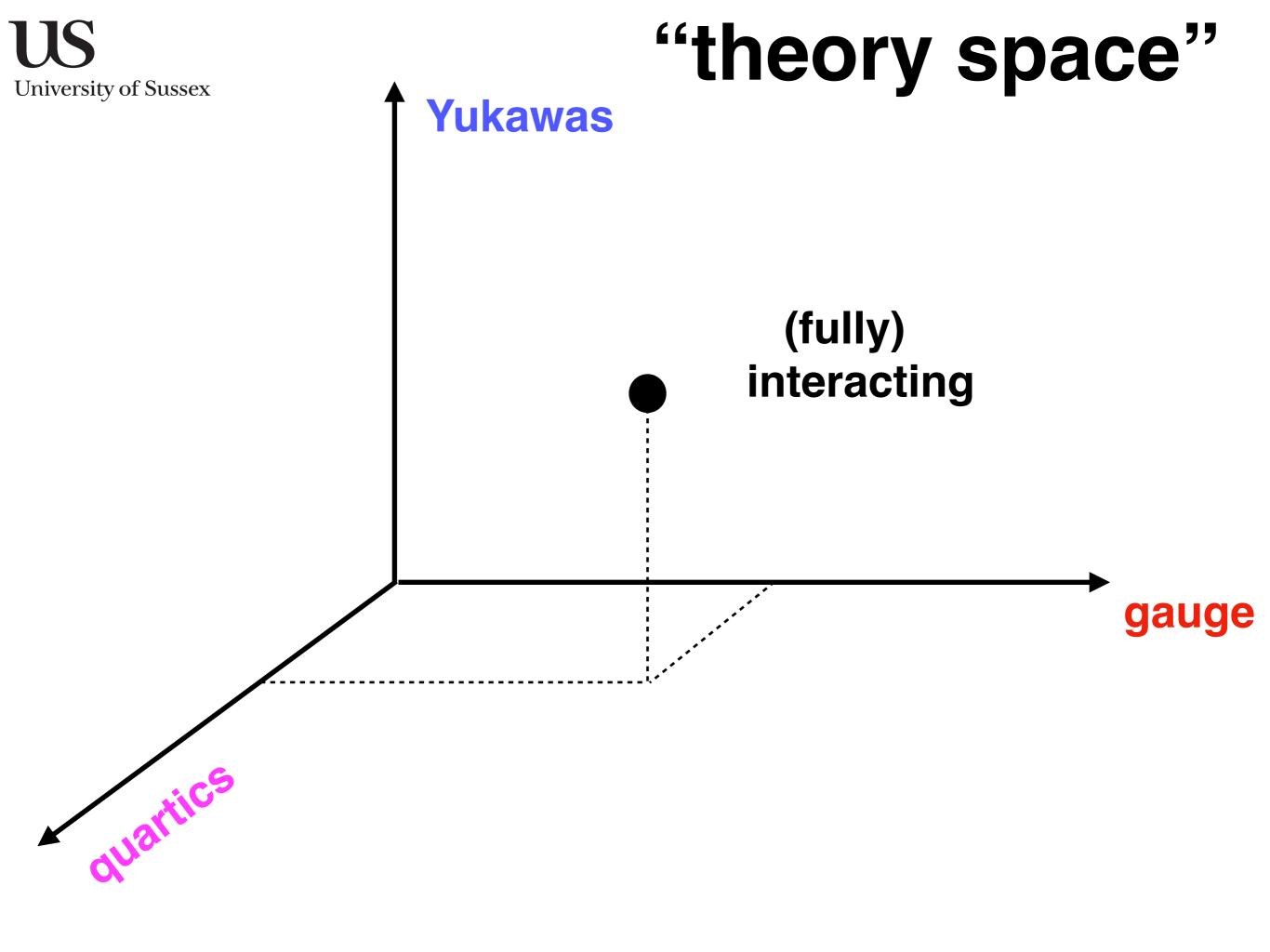
Yukawa

quartics



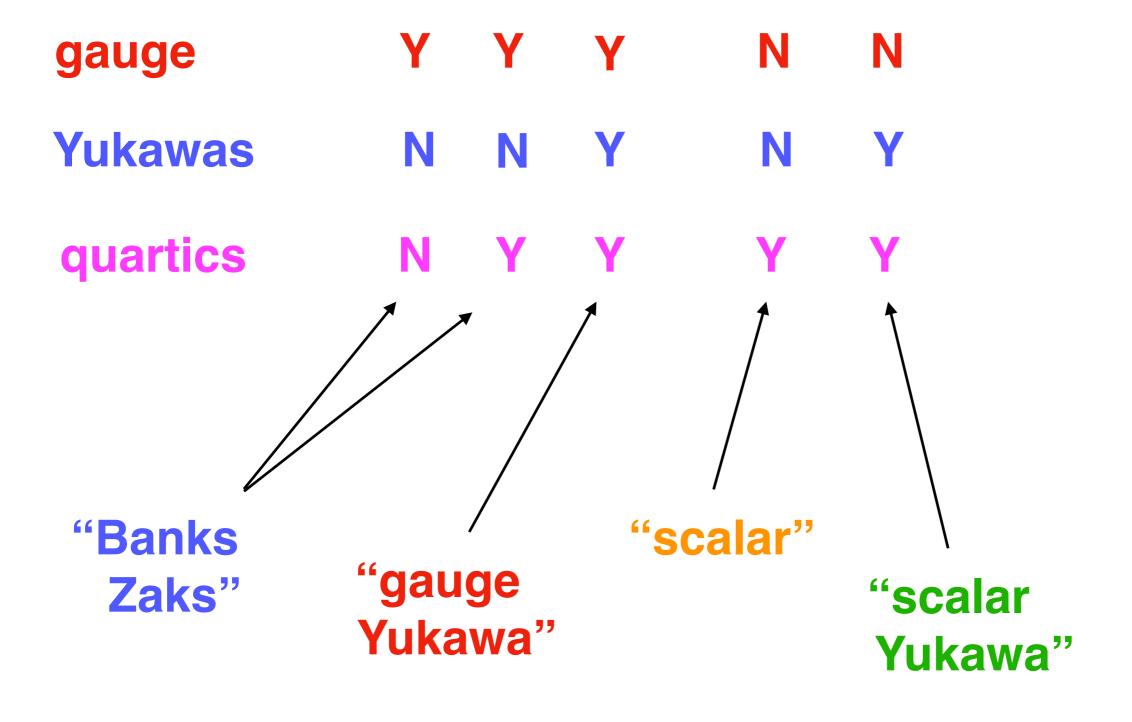




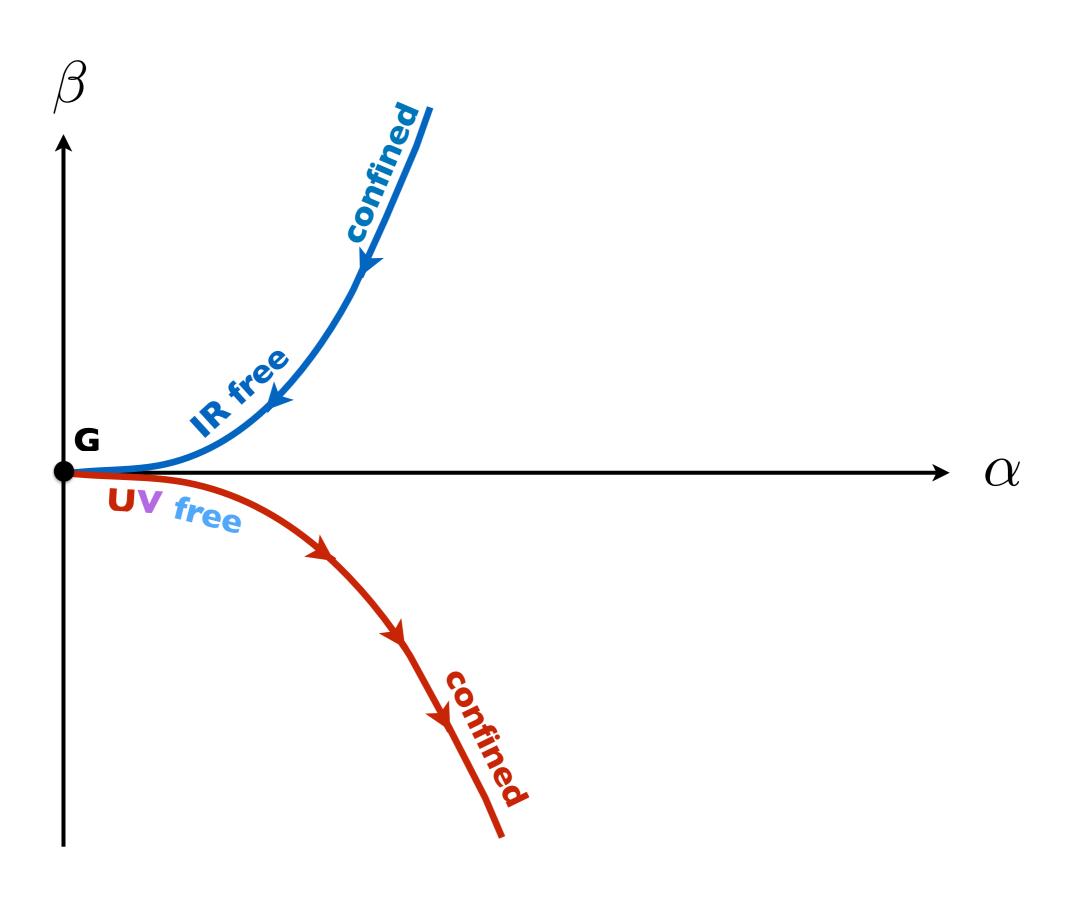


"theory space"

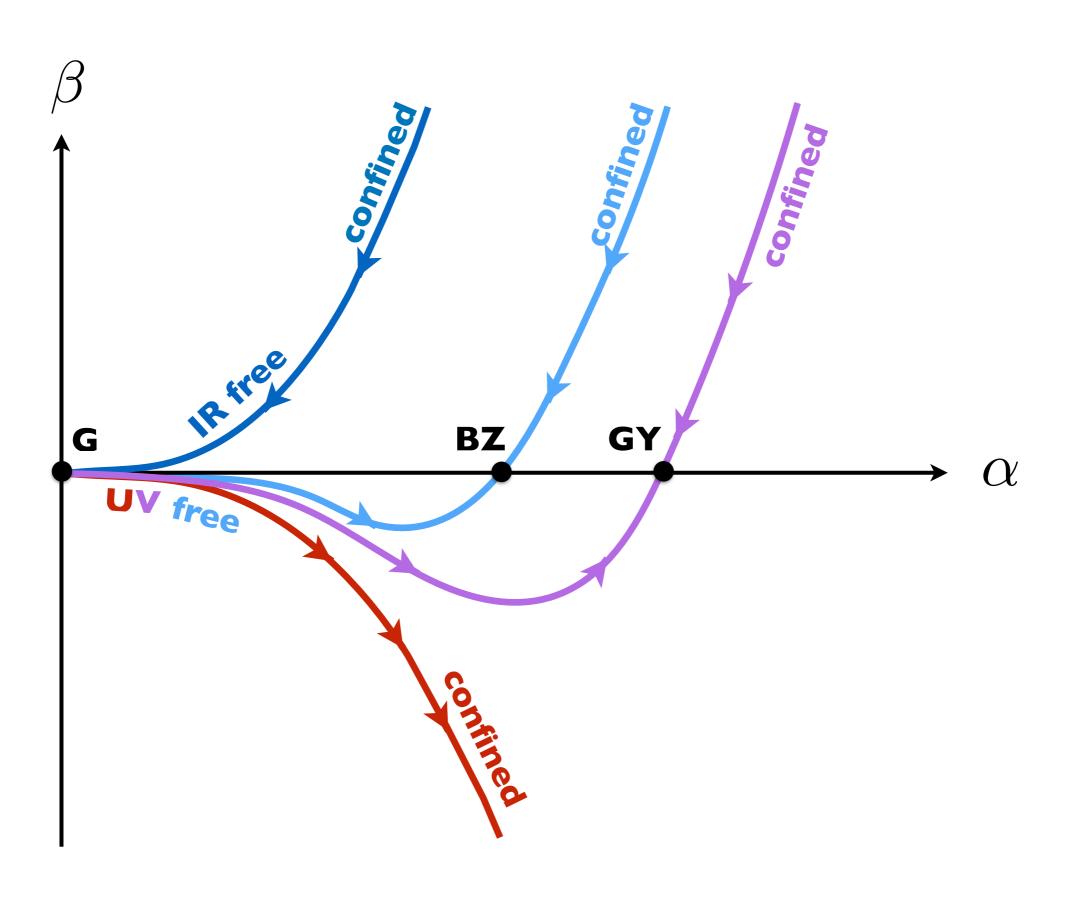
interacting fixed point



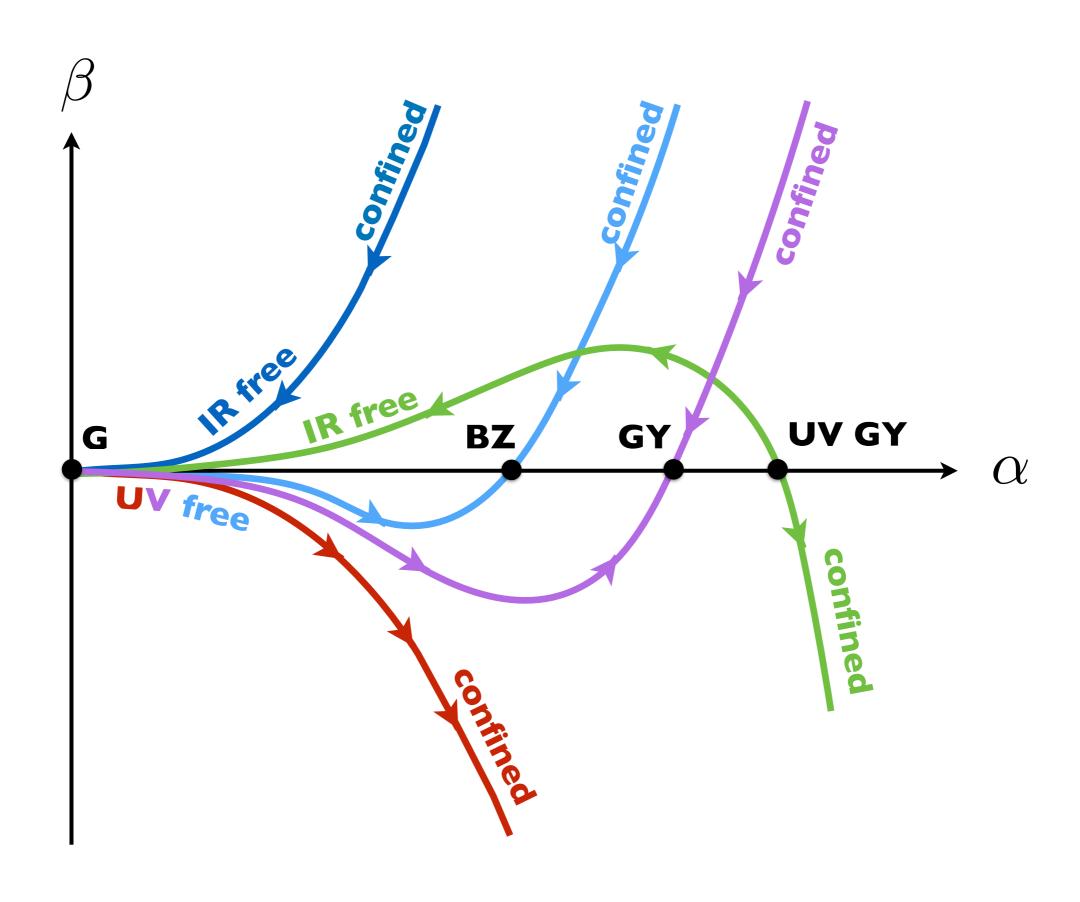
renormalisation group



renormalisation group

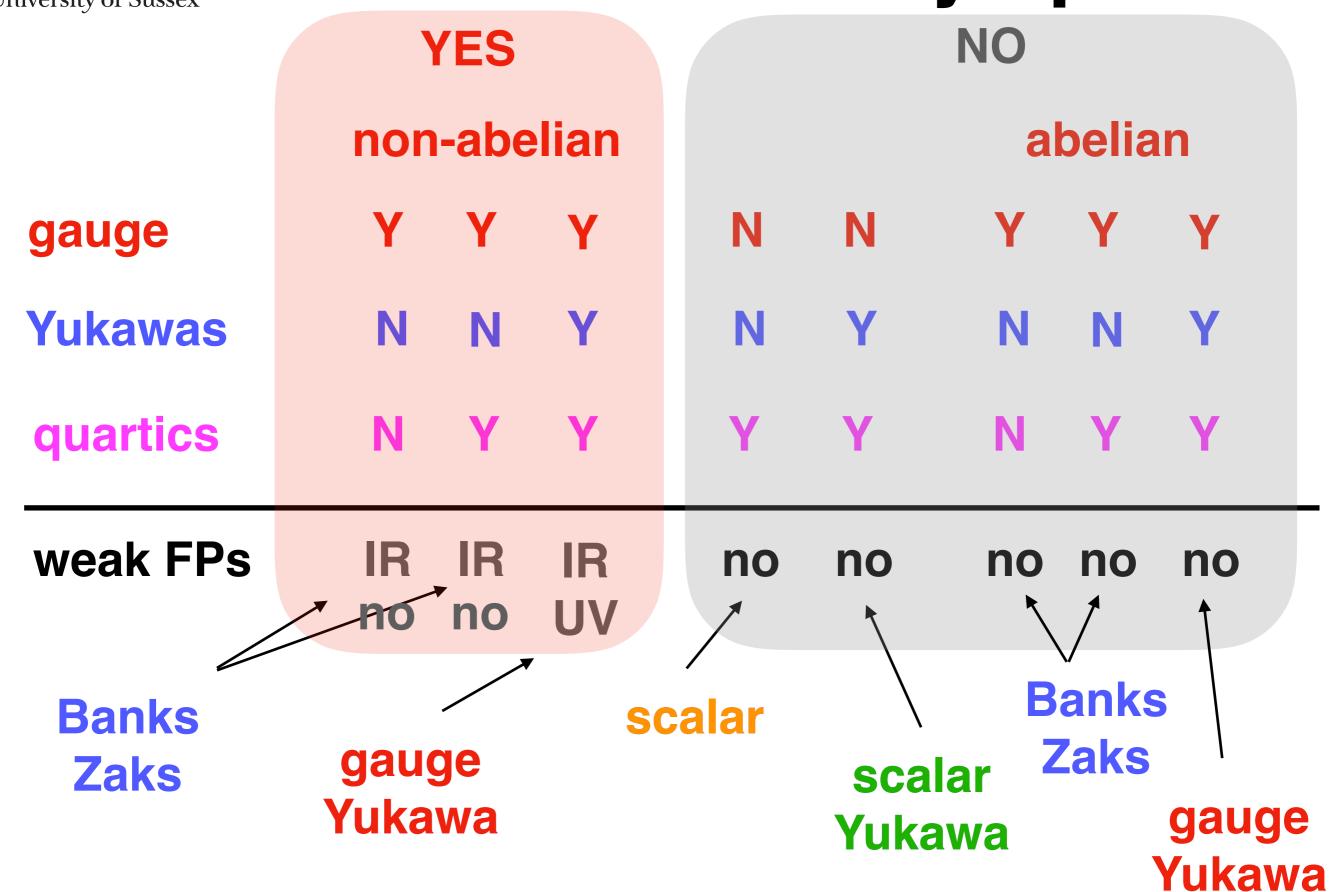


renormalisation group



US University of Sussex

"theory space"



proofs of fixed points & asymptotic safety

general theorems for fixed points

AD Bond, DF Litim, **Theorems for Asymptotic Safety of Gauge Theories**, 1608.00519 (EPJC) AD Bond, DF Litim, **Price of Asymptotic Safety**, 1801.08527 (PRL)

simple gauge theories with matter

DF Litim, F Sannino, **Asymptotic Safety Guaranteed**, 1406.2337 (JHEP)
AD Bond, DF Litim, G Medina Vazquez, T Steudtner, **Conformal window for asymptotic safety**, 1710.07615 (PRD)

semi-simple SU(N) x SU(M) gauge theories with matter

AD Bond, DF Litim, More Asymptotic Safety Guaranteed, 1707.04217 (PRD)

supersymmetric gauge theories with matter

AD Bond, DF Litim, Asymptotic Safety Guaranteed in Supersymmetry, 1709.06953 (PRL)

higher order interactions in gauge theories with matter

T Buyukbese, DF Litim, Asymptotic Safety Beyond Marginal Interactions, PoS LATTICE2016 (2017) 233

phenomenology and models beyond the Standard Model

A Bond, G Hiller, K Kowalska, DF Litim, **Directions for model building from asymptotic safety**, JHEP1708 (2017) 004 G Hiller, C Hermigos-Feliu, DF Litim, T Steudtner, **Asymptotically safe extensions of the Standard Model and their flavour phenomenology**, Moriond (EW2019) 1905.11020

gauge theory

$$\alpha = \frac{g^2}{(4\pi)^2}$$

$$\beta = -B \alpha^2 + C \alpha^3 + \mathcal{O}(\alpha^4)$$

weakly coupled fixed point

$$0 < \alpha^* = B/C \ll 1$$

competition between matter and gauge fields

gauge theory

$$\alpha = \frac{g^2}{(4\pi)^2}$$

$$\beta = -B \alpha^2 + C \alpha^3 + \mathcal{O}(\alpha^4)$$

weakly coupled fixed point

$$0 < \alpha^* = B/C \ll 1$$

competition between matter and gauge fields

$$B = \frac{2}{3} \left(11C_2^G - 2S_2^F - \frac{1}{2}S_2^S \right)$$

$$C = 2\left[\left(\frac{10}{3} C_2^G + 2C_2^F \right) S_2^F + \left(\frac{1}{3} C_2^G + 2C_2^S \right) S_2^S - \frac{34}{3} (C_2^G)^2 \right]$$

gauge theory

$$\alpha = \frac{g^2}{(4\pi)^2}$$

$$\beta = -B \alpha^2 + C \alpha^3 + \mathcal{O}(\alpha^4)$$

weakly coupled fixed point

$$0 < \alpha^* = B/C \ll 1$$

competition between matter and gauge fields

$$B, C > 0$$
:

gauge theory

$$\alpha = \frac{g^2}{(4\pi)^2}$$

$$\beta = -B \alpha^2 + C \alpha^3 + \mathcal{O}(\alpha^4)$$

weakly coupled fixed point

$$0 < \alpha^* = B/C \ll 1$$

competition between matter and gauge fields

$$B, C > 0$$
:

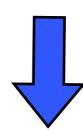
Caswell '74

$$B, C < 0$$
:

why no UV BZ?

$$C = \frac{2}{11} \left[2S_2^F \left(11C_2^F + 7C_2^G \right) + 2S_2^S \left(11C_2^S - C_2^G \right) - 17BC_2^G \right]$$

>0

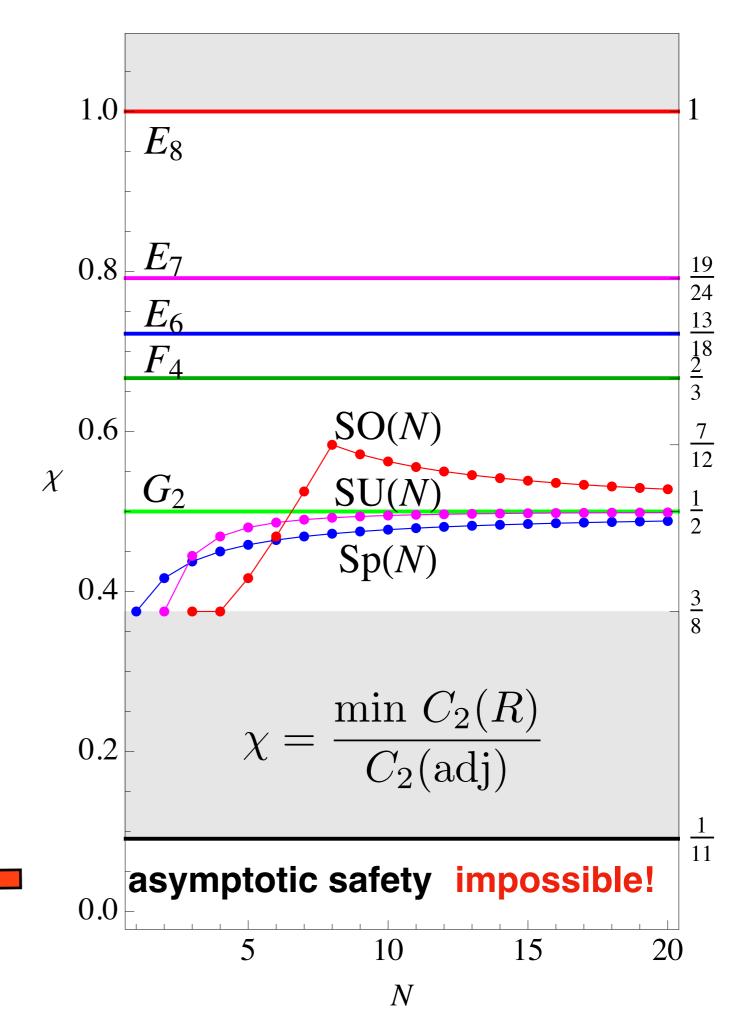


> 0

must have

$$C_2^S < \frac{1}{11}C_2^G$$

here's why.



weakly coupled BZ are never UV

asymptotic safety

result

case	gauge group	matter	Yukawa	asymptotic safety
a)	simple	fermions in irreps	No	No
b)	simple or abelian	fermions, any rep scalars, any rep fermions and scalars, any rep	No No No	No No No
c)	semi-simple, with or without abelian factors	fermions, any rep scalars, any rep fermions and scalars, any rep	No No No	No No No

strict no go theorems

can more couplings help?

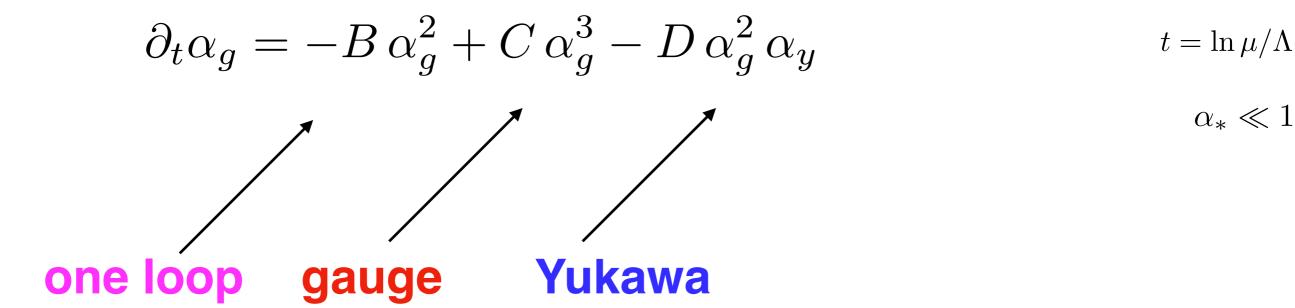
more gauge couplings No (same sign)

scalar self-couplings No (start at 3- or 4-loop)

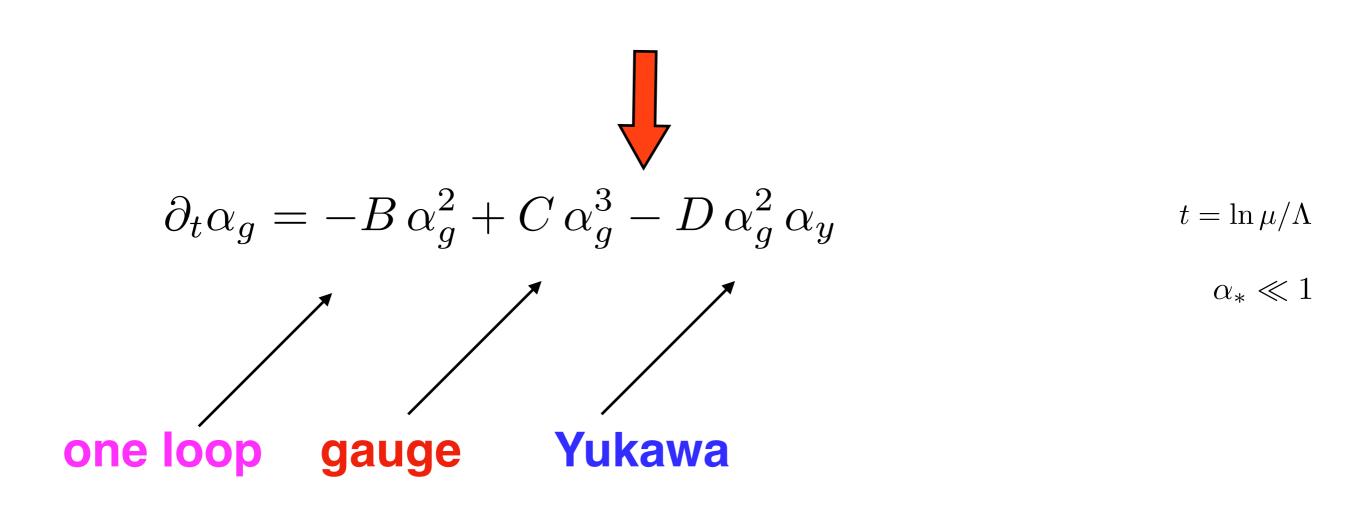
Yukawa couplings

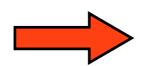
Yes! (start at 2-loop)

why Yukawas?



why Yukawas?





Yukawas slow down the running of gauge couplings

basics of asymptotic safety

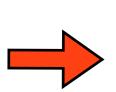
gauge Yukawa theory

$$\partial_t \alpha_g = -B \,\alpha_g^2 + C \,\alpha_g^3 - D \,\alpha_g^2 \,\alpha_y$$

$$\partial_t \alpha_y = E \,\alpha_y^2 - F \,\alpha_g \,\alpha_y$$

$$\alpha_* \ll 1$$

interacting UV fixed point provided that



$$C' = C - \frac{DF}{E} < 0$$

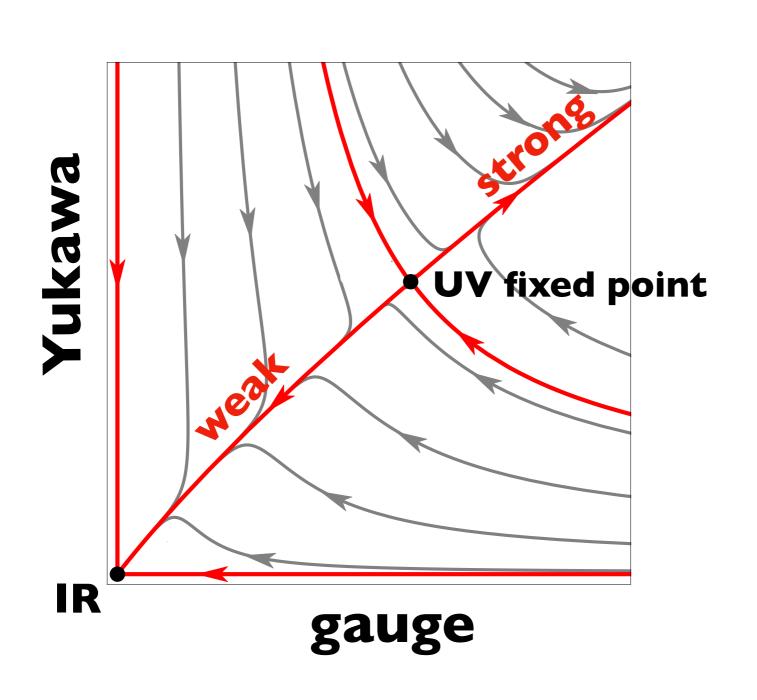
$$B < 0$$

theorems for asymptotic safety

case	gauge group	matter	Yukawa	asymptotic safety
a)	simple	fermions in irreps	No	No
b)	simple or abelian	fermions, any rep scalars, any rep fermions and scalars, any rep	No No No	No No No
c)	semi-simple, with or without abelian factors	fermions, any rep scalars, any rep fermions and scalars, any rep	No No No	No No No
d)	simple or abelian	fermions and scalars, any rep	Yes	Yes *)
e)	semi-simple, with or without abelian factors	fermions and scalars, any rep	Yes	Yes*)

^{*)} provided certain auxiliary conditions hold true

template UV fixed point



SU(N) local NF fermions mesons

1 gauge

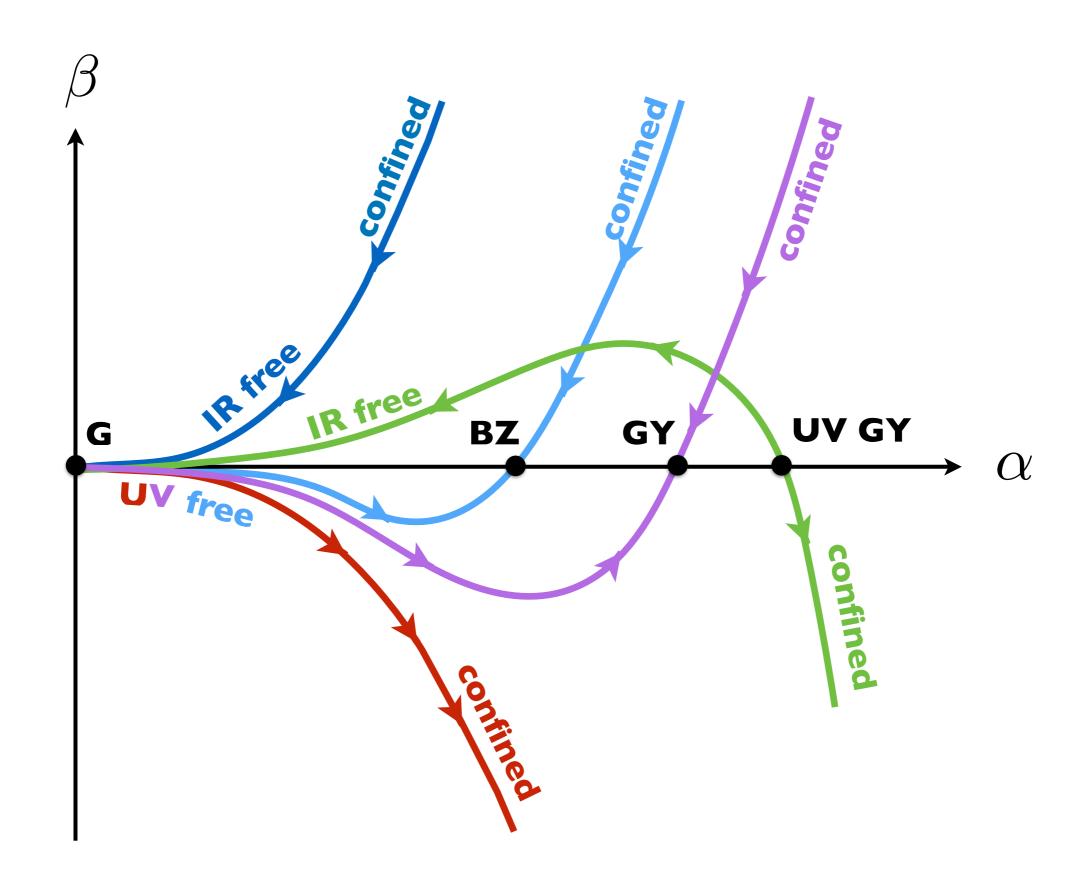
1 Yukawa

2 quartics

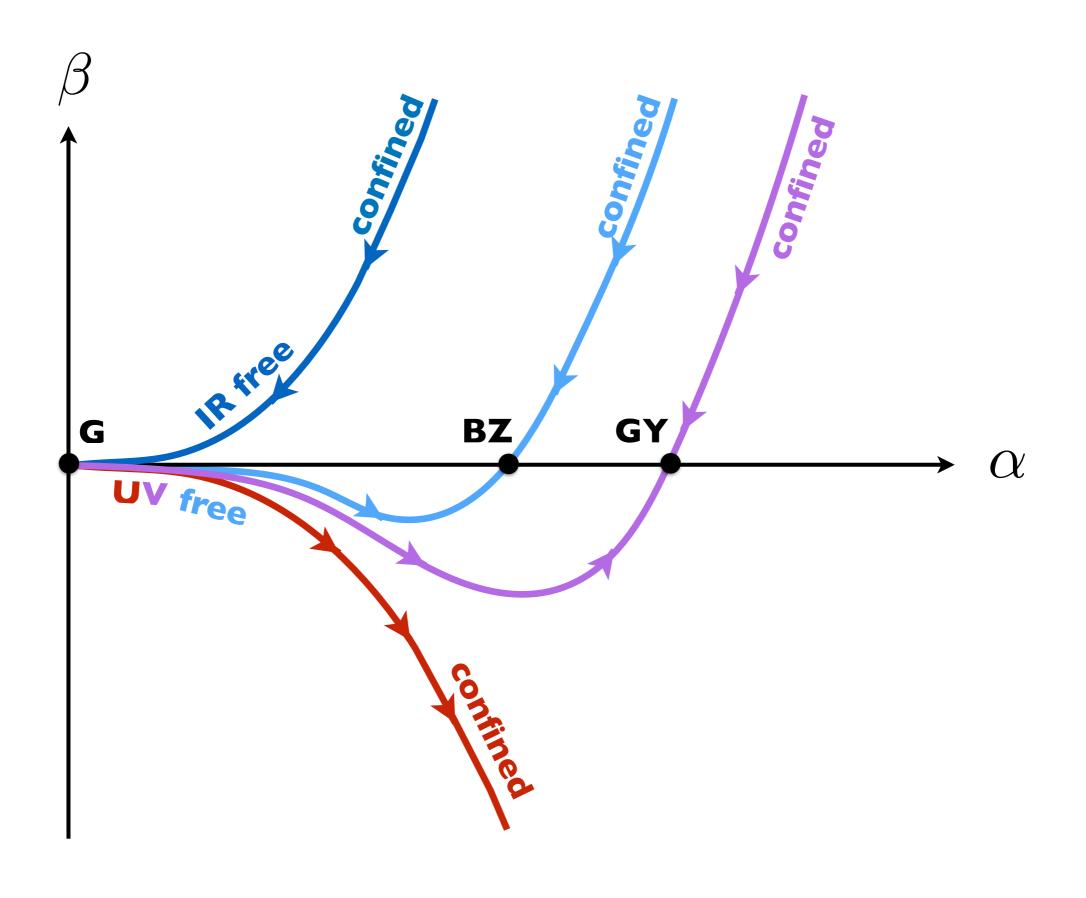
SU(Nf)xSU(Nf) global

(Veneziano limit)

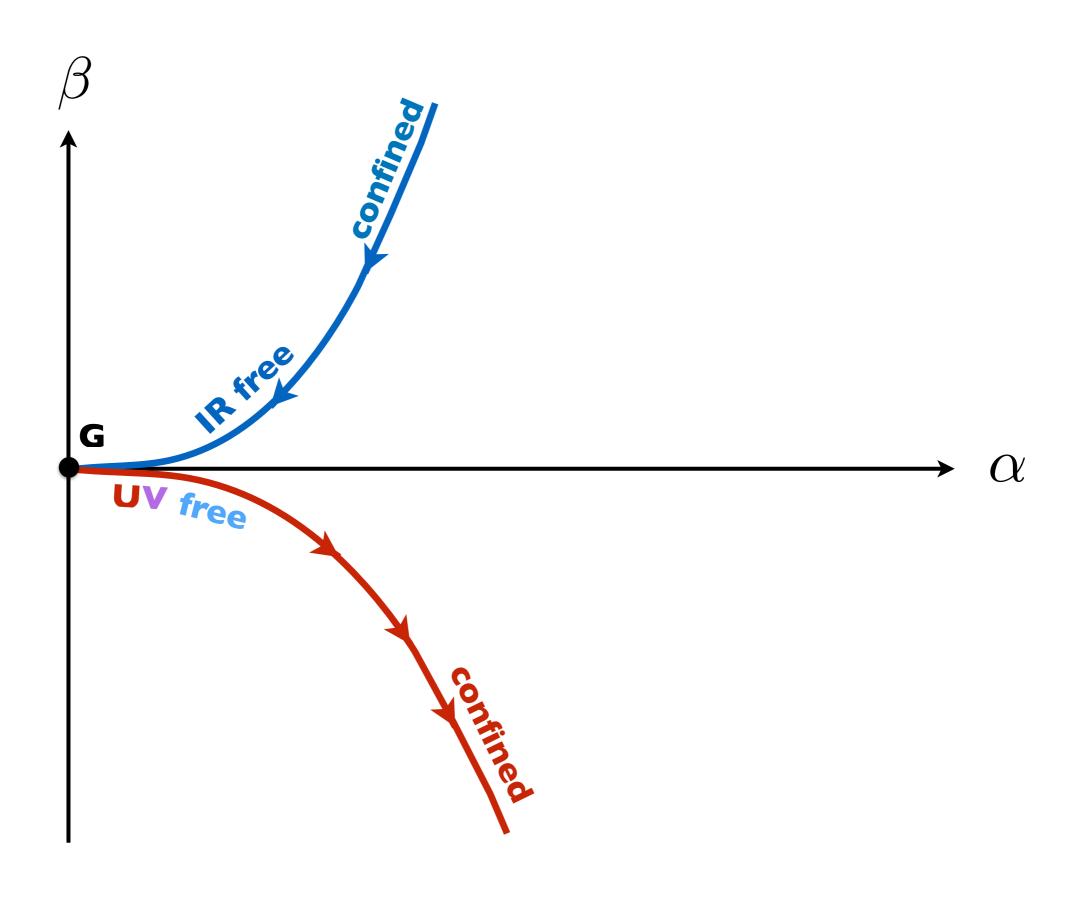
N=0 supersymmetry



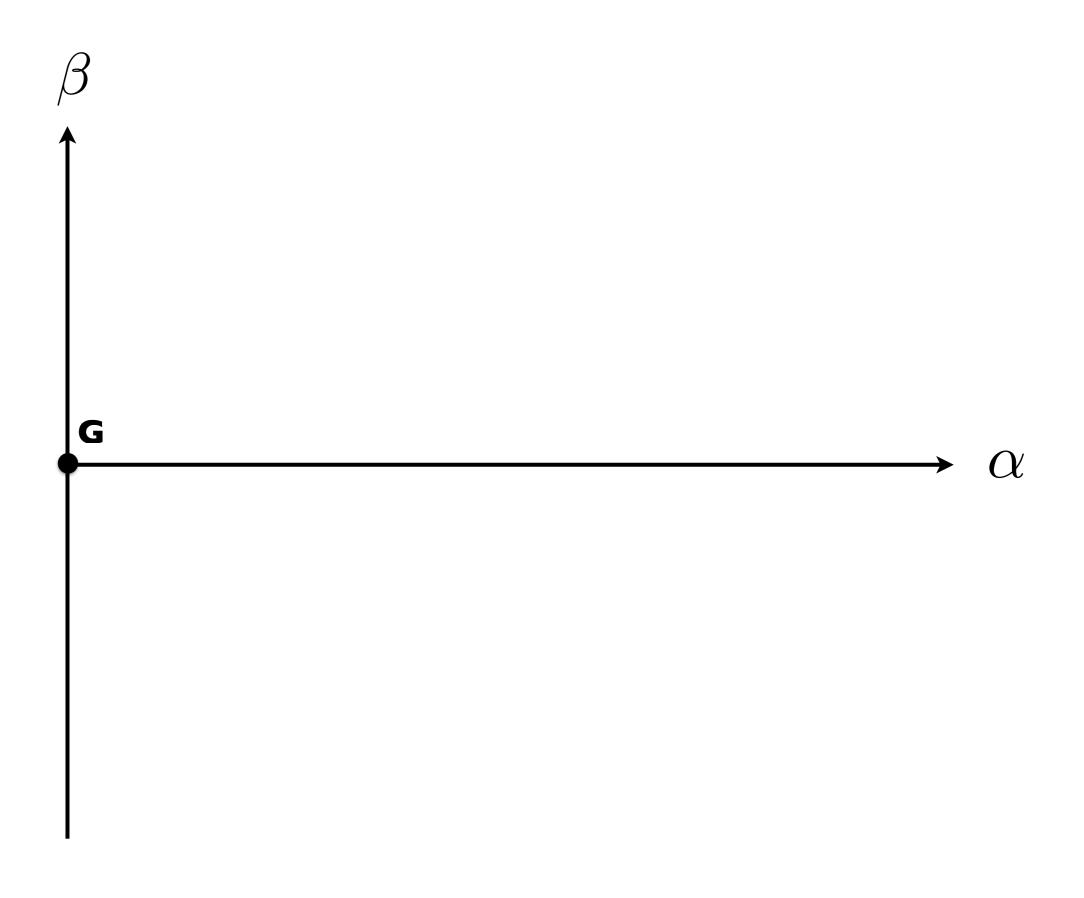
N=1 supersymmetry



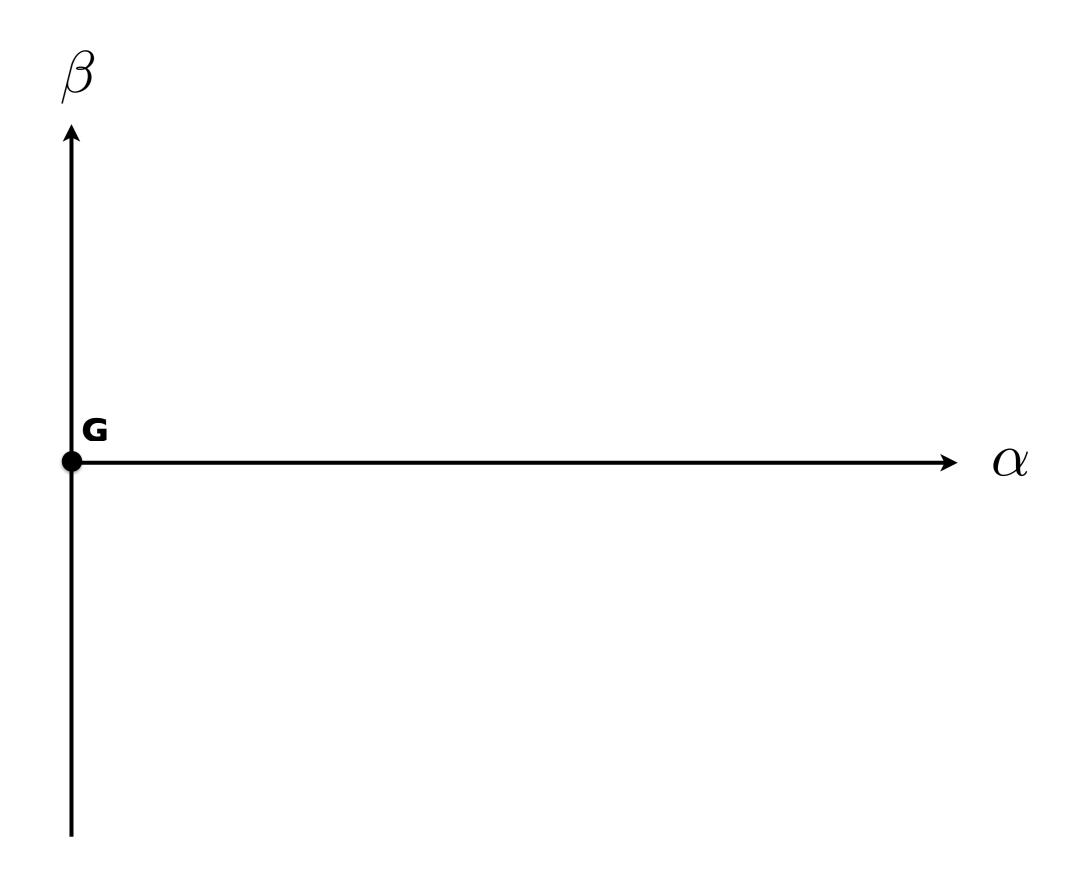
N=2 supersymmetry



N=3 supersymmetry



N=4 supersymmetry



N=1 asymptotic safety

superfield anomalous dimension

$$2\frac{d_R}{d_G}|\gamma_R|^2 = B\alpha_* + \mathcal{O}(B\alpha_*^2, \alpha_*^3)$$

S Martin, J Wells, hep-ph/0011382

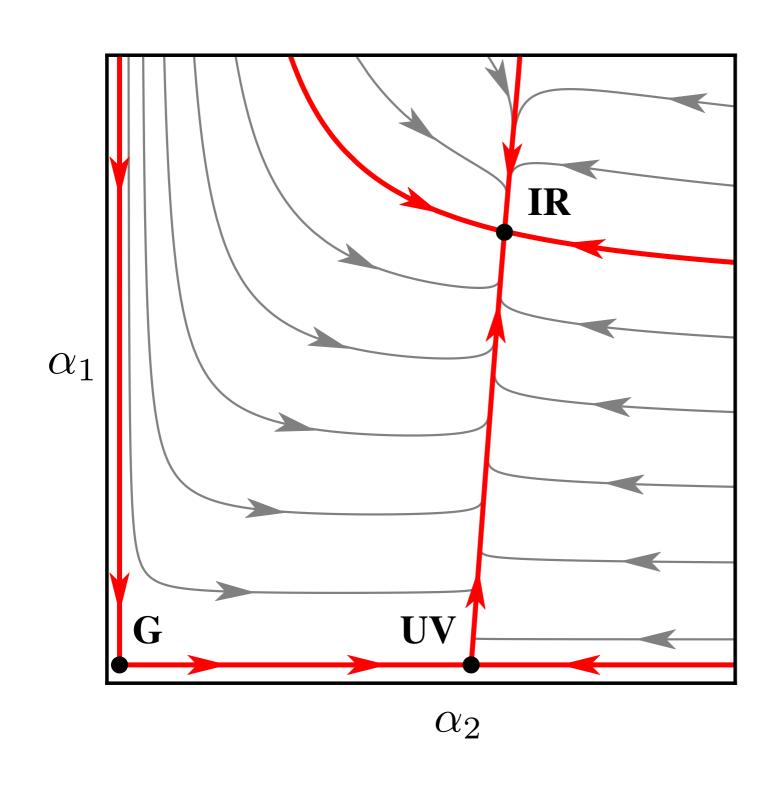
primary mechanism does not work (asymptotic freedom with B > 0 is necessary)

however: secondary mechanism

semi-simple susy gauge theory

AD Bond, DF Litim, 1709.06953/PRL

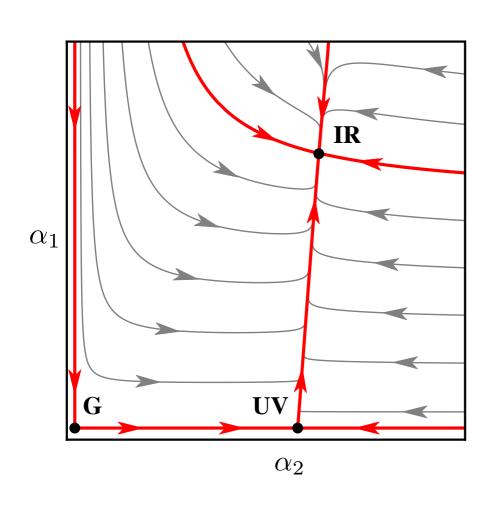
Susy UV fixed point

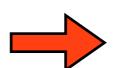


SU(N)xSU(M) + superpotential

"Susy enhances predictivity"

Susy UV fixed point





asymptotically safe supersymmetric SM extensions

Kevin Moch (on Wednesday)

summary of weakly interacting fixed points

Case	Condition	Fixed Point
i)	$g_i = \mathbf{Y}_{JK}^A = \lambda_{ABCD} = 0$	Gaussian
$ii)\\iii)$	some $g_i \neq 0$, all $\mathbf{Y}_{JK}^A = 0$ some $g_i \neq 0$, some $\mathbf{Y}_{JK}^A \neq 0$	Banks-Zaks gauge-Yukawa

- asymptotic safety requires all types of matter fields
 Yukawa couplings are key
- works with or w/o N=1 supersymmetry

asymptotic safety BSM

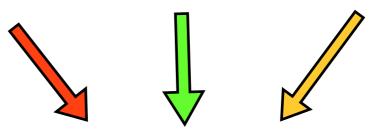
asymptotic safety beyond the SM

minimal framework:

SM gauge symmetry

AD Bond, G Hiller, K Kowalska, DF Litim, 1702.01727 (JHEP)

$$SU(3)_C \times SU(2)_L \times U(1)_Y$$



 N_F flavors of BSM fermions

BSM singlet scalars

$$\psi_i(R_3, R_2, Y)$$

 S_{ij}

features: vector-like fermions global flavor symmetry $U(N_F) imes U(N_F)$ single BSM Yukawa coupling

$$L_{\rm BSM, \, Yukawa} = -y \, {\rm Tr}(\overline{\psi}_L \, S \, \psi_R + \overline{\psi}_R \, S^{\dagger} \, \psi_L)$$

signatures

for low scale matching

some BSM masses within TeV energy range

if $R_3 \neq 1$ for LHC direct production

 $(R_3 = 1 \text{ can be tested at future } e^+e^- \text{ colliders})$

flavor symmetry: stable BSM fermions

broken flavor symmetry: lightest BSM fermion stable

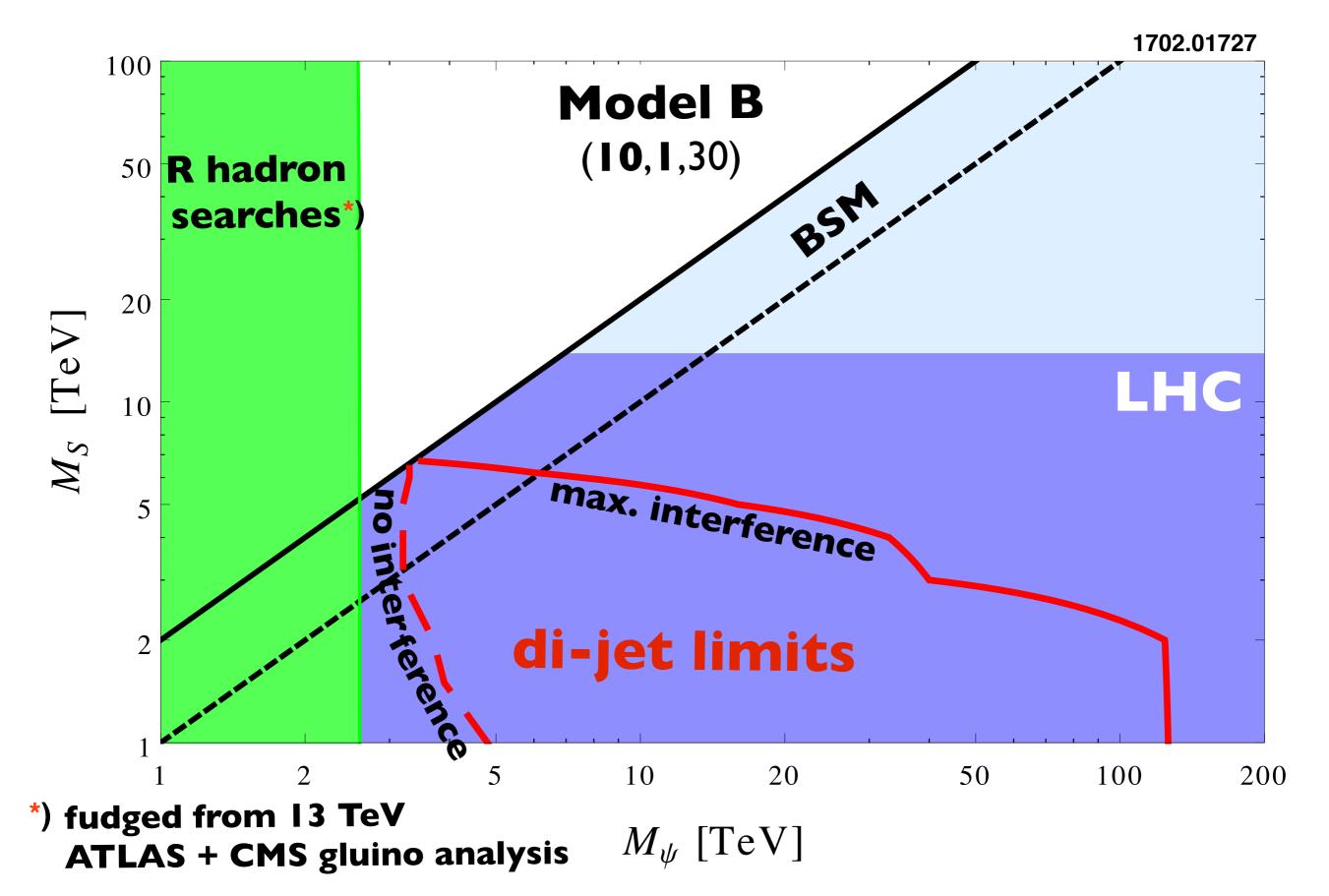
constraints from

running couplings

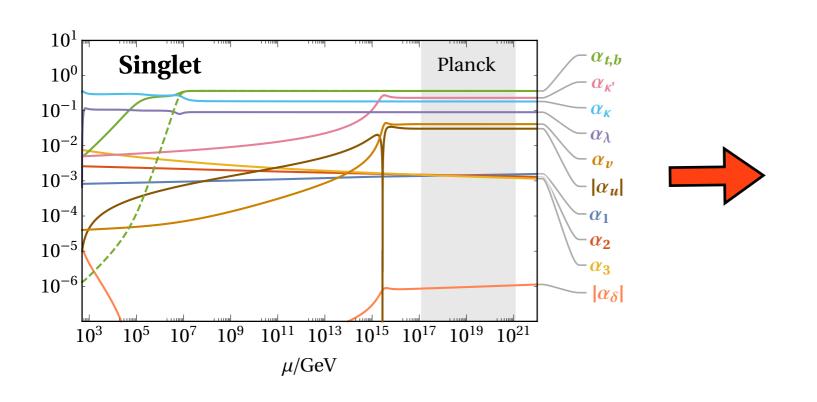
the weak sector

long-lived QCD bound states (R hadrons) di-boson searches

mass exclusion limits



more model building



asymptotically safe SM extensions

Tom Steudtner

(on Wednesday)

4d quantum gravity

gravitation

physics of classical gravity

Einstein's theory of general relativity

$$R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -\Lambda g_{\mu\nu} + 8\pi G_N T_{\mu\nu}$$

Newton's coupling

cosmological constant

$$G_N = 6.7 \times 10^{-11} \frac{\text{m}^3}{\text{kg } s^3}$$

$$\Lambda \approx 10^{-35} s^{-2}$$

what's new with gravity?

degrees of freedom: spin 2

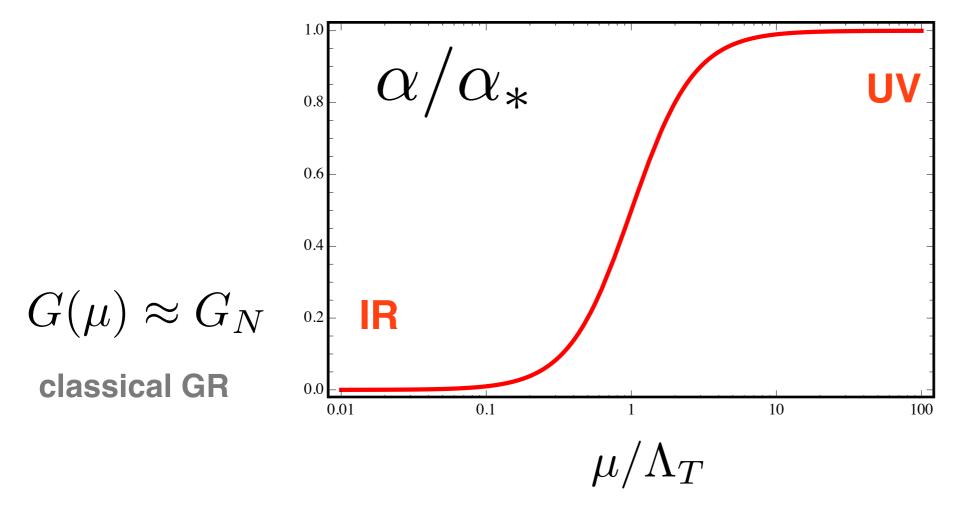
Newton's coupling is dimensionful $[G_N] = 2 - D < 0$ perturbatively non-renormalisable

interacting fixed point requires large anomalous dimensions

why it might work...

dimensionless coupling

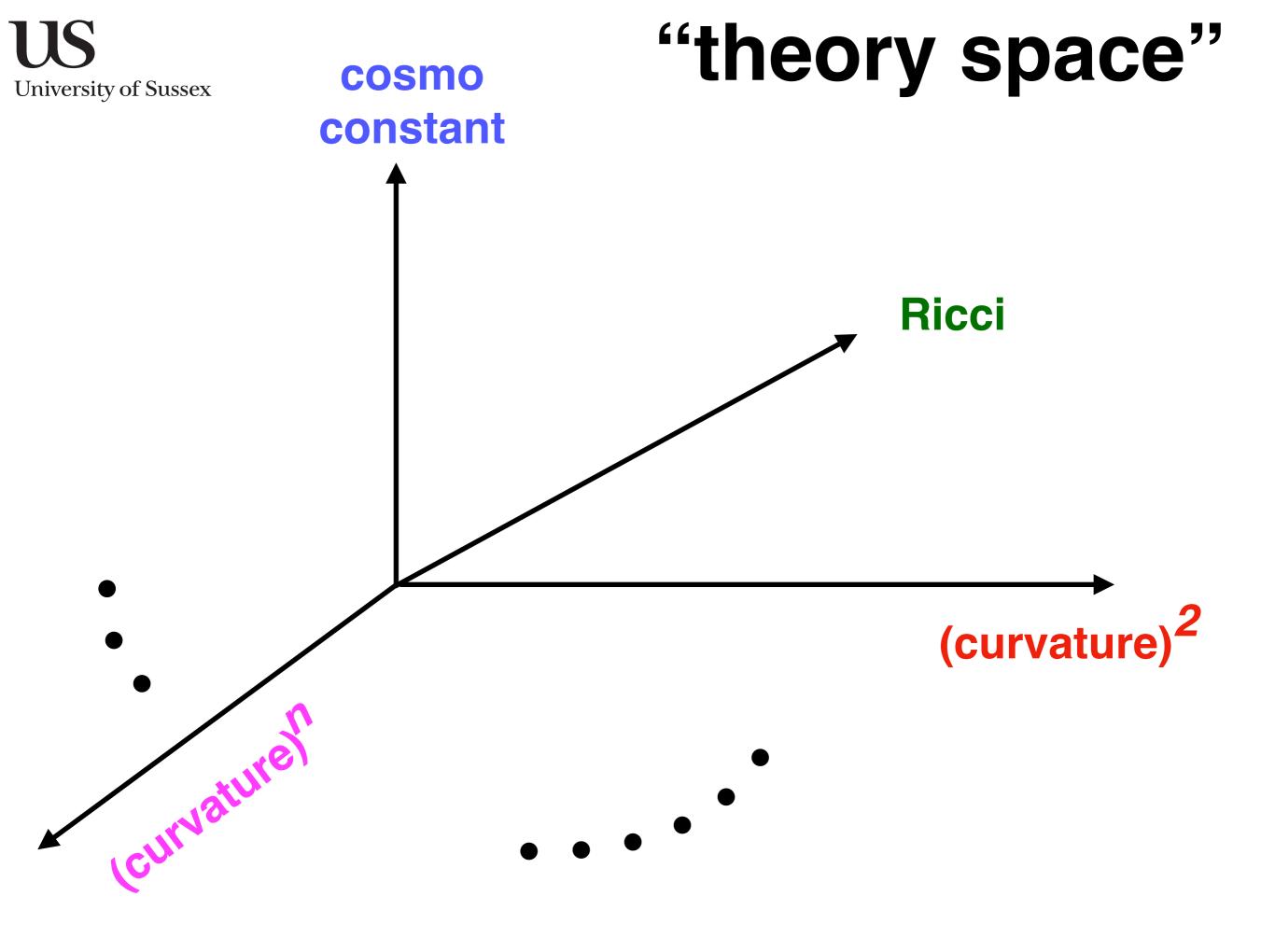
$$\alpha = G_N(\mu) \, \mu^{D-2}$$

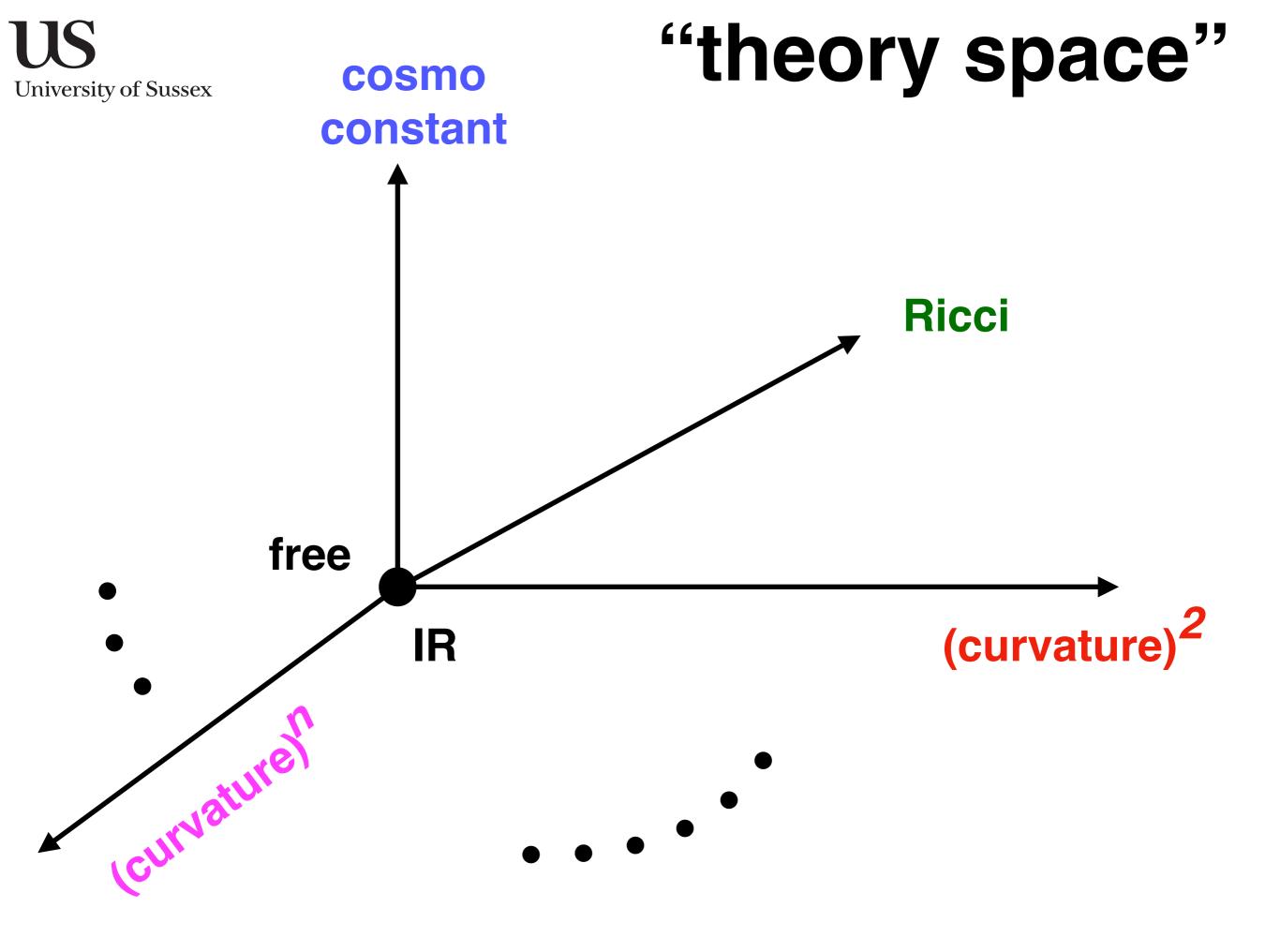


$$G(\mu) \approx \frac{\alpha_*}{\mu^{D-2}}$$

quantum GR

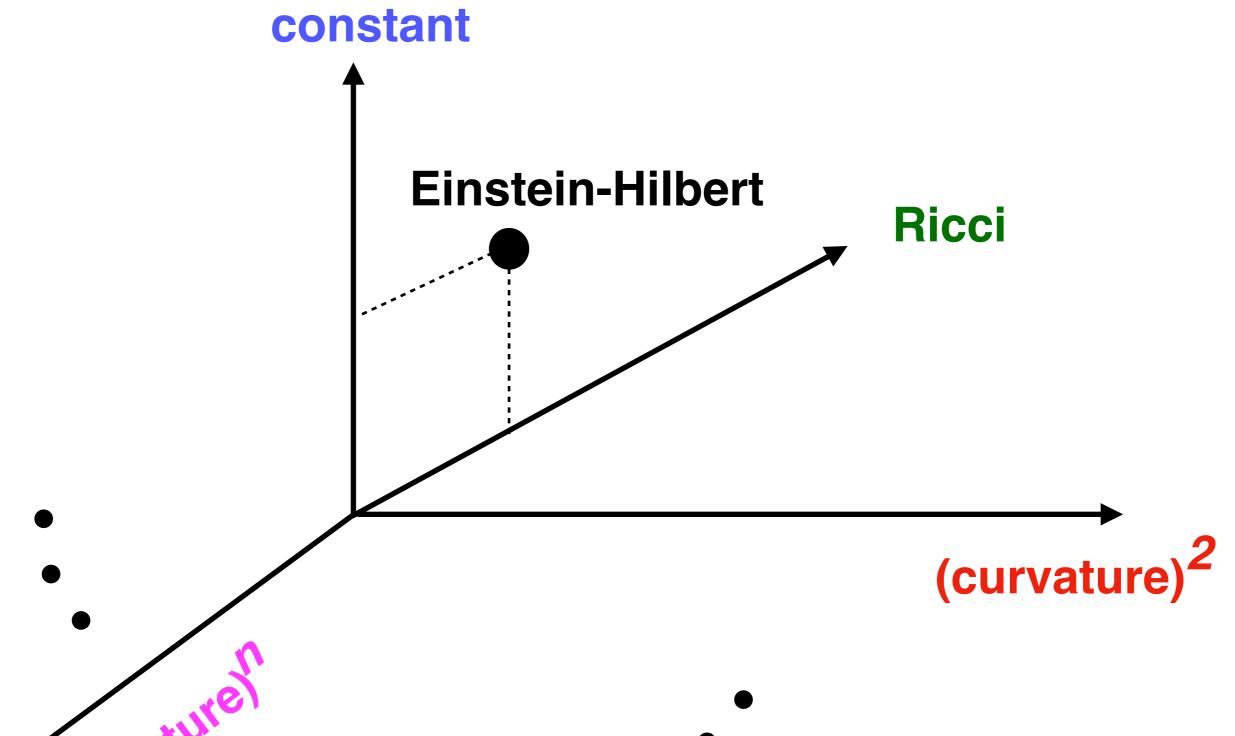
UV fixed point implies "weak gravity"





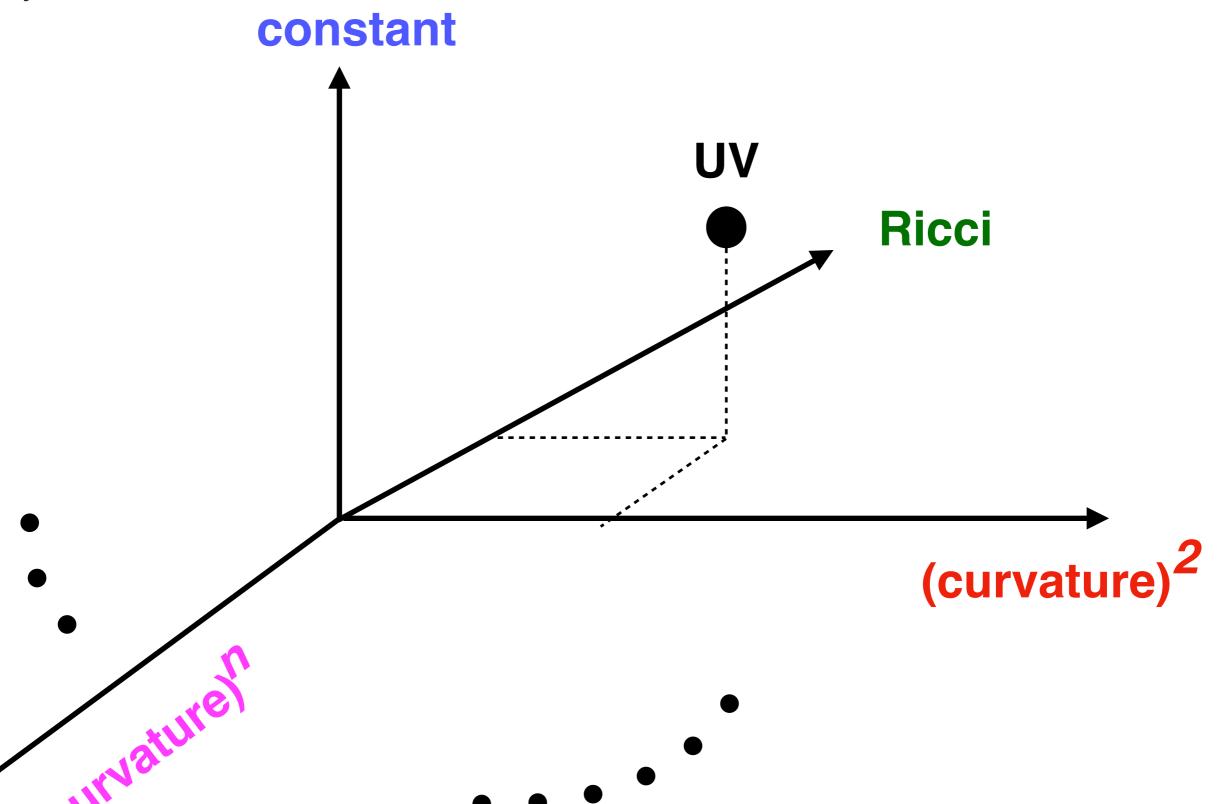
cosmo

"theory space"



cosmo

"theory space"



bootstrap

non-perturbative tools, e.g.

Wilson's Renormalisation Group, Lattice

bootstrap search strategy

Falls, DL, Nikolakopoulos, Rahmede '13, '14

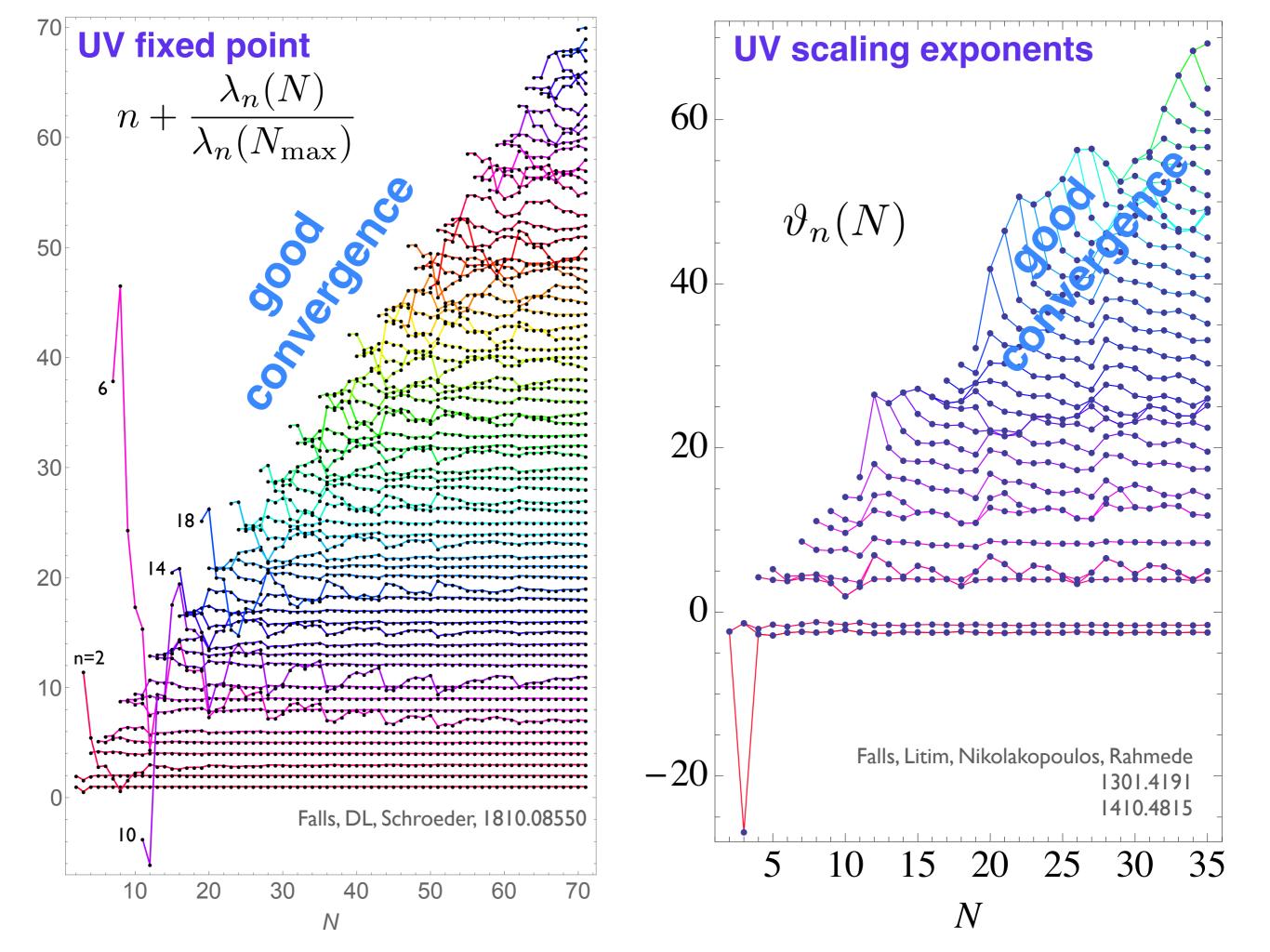
- 1 fix N, compute RG flow
- 2 deduce fixed point and exponents
- 3 increase N to N+1 and start over at 1

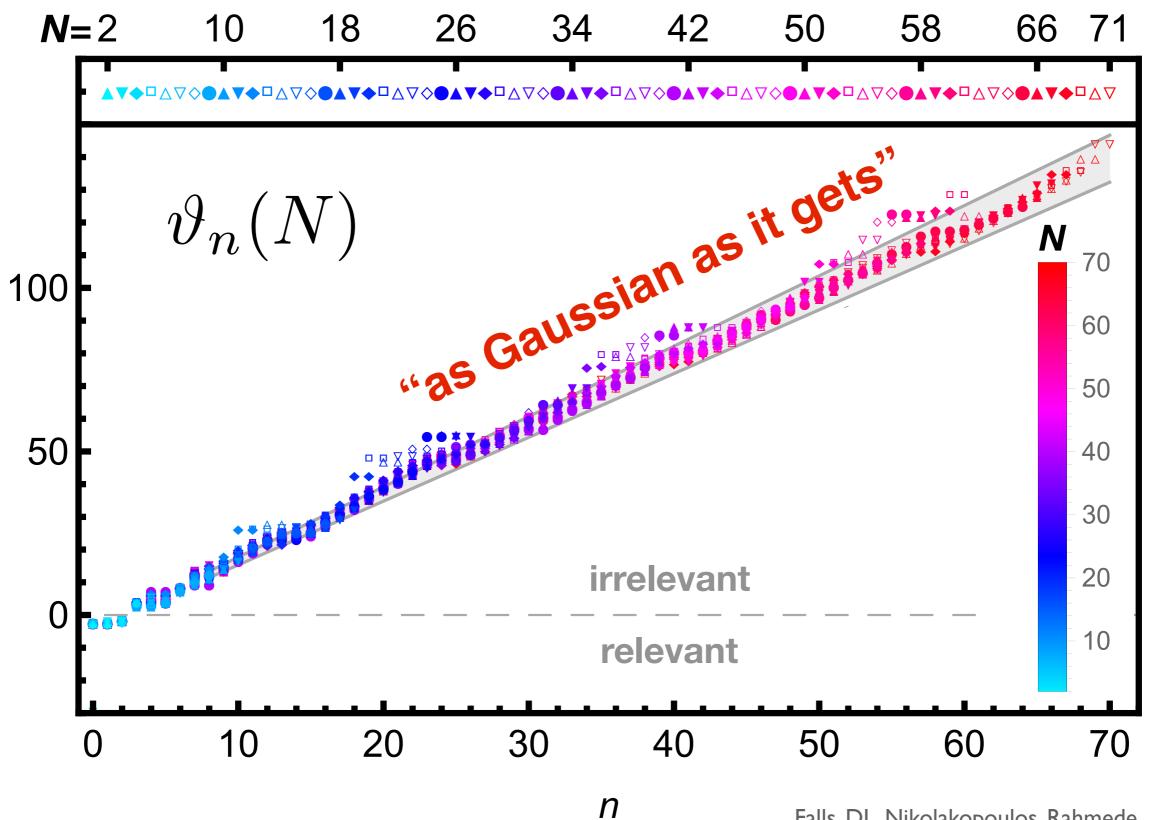
bootstrap

Ricci scalars $\Gamma_k \propto f(R)$

$$\Gamma_k = \int d^4x \sqrt{\det g_{\mu\nu}} \frac{1}{16\pi G} \left[-R + 2\Lambda \right] + \sum_{n=2}^{N-1} \lambda_n R^n$$

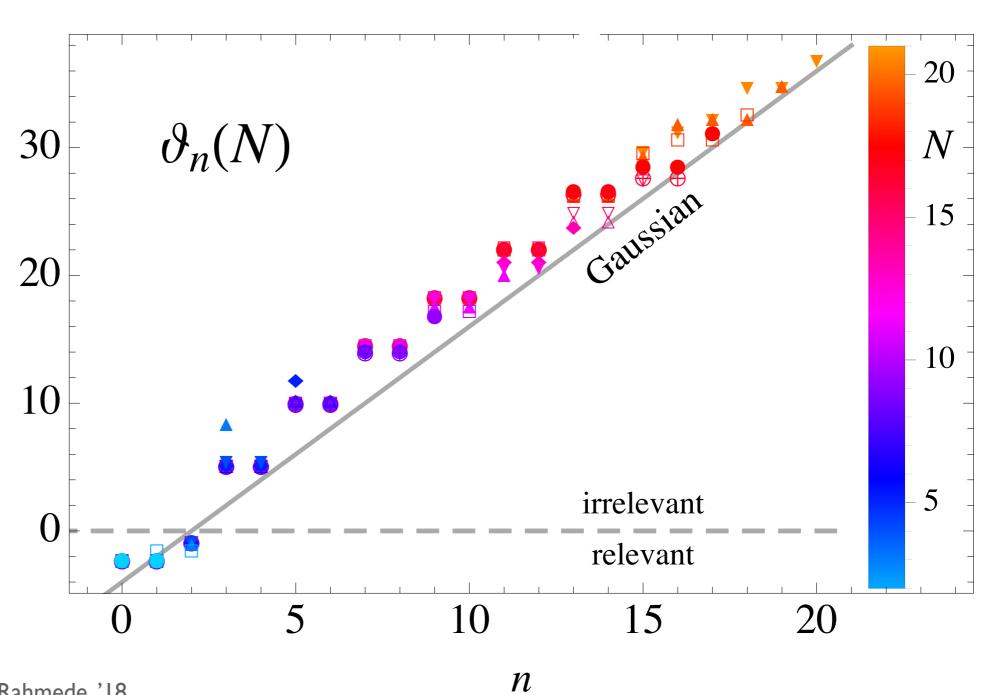
effective action with invariants up to mass dimension D = 2(N-1)





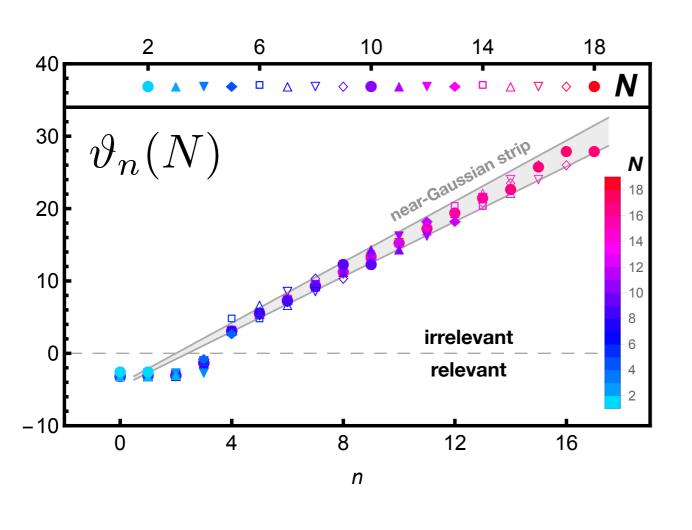
Ricci

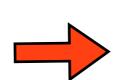
$$\Gamma_k = \int d^d x \sqrt{g} [F_k(\text{Ric}^2) + R \cdot Z_k(\text{Ric}^2)]$$



Riemann

Quantum Gravity with SM





Asymptotic safety of gravity with SM matter

Gustavo Medina Vazquez

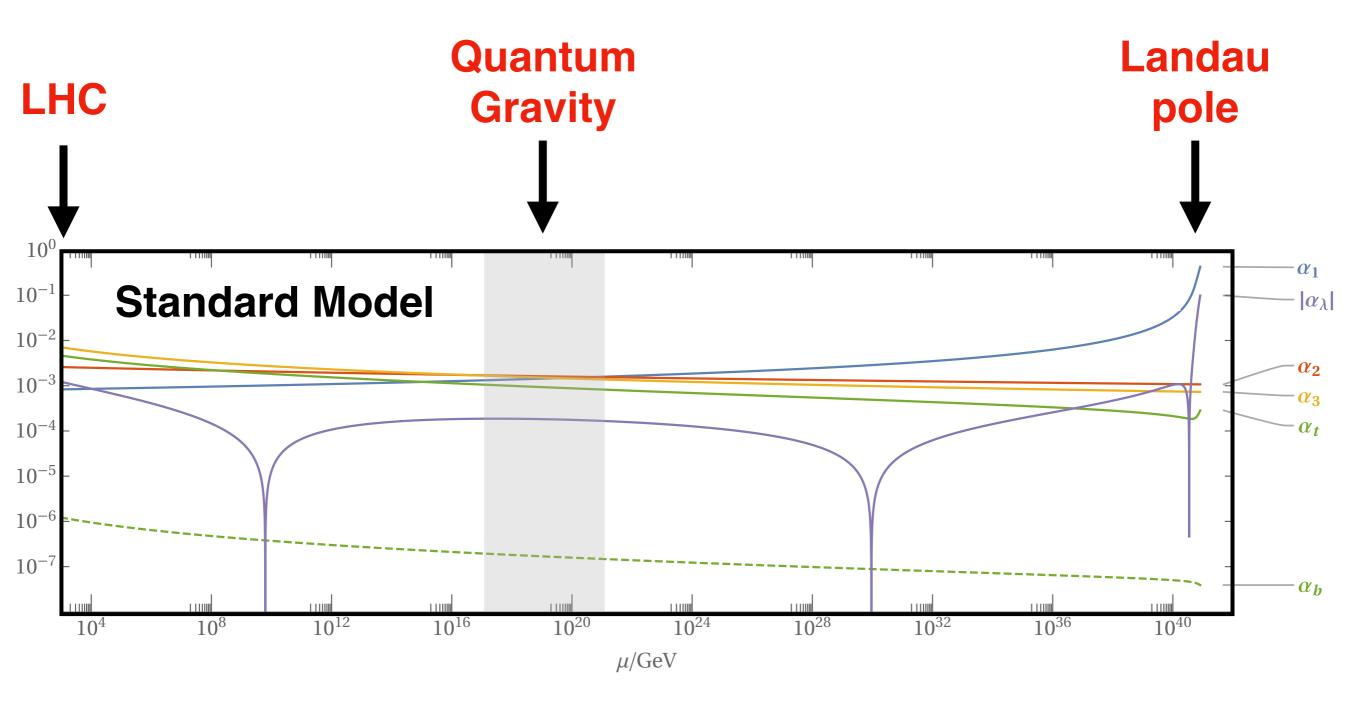
(on Wednesday)

conclusions

rigorous results for asymptotic safety at weak coupling in general 4d QFTs w/o gravity new directions for model building

strong hints for asymptotic safety in 4d quantum gravity from bootstrap and higher order curvature interactions

outlook...



outlook...

