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General Relativity is a classical field theory for the metric field g, (X)
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Gravitational field equations (system of ten coupled 2™ order nonlinear PDE's)
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matter
geometry

“Spacetime tells matter how to move —
matter tells spacetime how to curve” (J. A. Wheeler)



Approaches to quantum gravity

Quantum geometrodynamics
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Loop quantum gravity
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Causal dynamical triangulations
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String theory

credit: Riccardo Antonelli

Asymptotic safety

from: Phys. Rev. D 65 (2002) 065016

Perturbative quantum gravity
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Perturbative quantization of Einstein gravity

Perturbative QFT: same formalism for gravity and “matter” fields — unification
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Perturbative quantization of Einstein gravity

Perturbative QFT: same formalism for gravity and “matter” fields — unification

Quantum effective action T' = S + 35° | h*T'
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A’y KTy

. . . . =h=1 ,
Loop integrals lead to ultraviolet divergences: coupling Gn “~ Mg 2

Power counting in GR: propagators ~ p~2, vertices ~ p?

o et

Integral ~ [ (d4p)L ( ;), (p2) , topological relation: L =1 — (V — 1),
p

DSR =4L -2142V =2(L+1) grows with increasing loop order
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Need to introduce new interactions 12, Ry R", Ruvpe RMP7, ...
in original action Sgu — each with a new free parameter g1, g2, gs,. .-

Quantum Einstein gravity perturbatively non-renormalizable

['t Hooft, Veltman (1974), Goroff, Sagnotti (1986), van de Ven (1992)]
[Bern, Cheung, Chi, Davies, Dixon, Nohle (2015)]
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Quantum gravity as an effective field theory

Energy [GeV] Effective field theory (EFT) = low energy approximation
oo T+ UV to (potentially unknown) fundamental theory in the UV
1018 + Mp [Wilson (1971), Weinberg (1979), Donoghue (1995),...]
T A

In GR the natural cutoff scale is A = Mp ~ 10'® GeV

Gravity as EFT: agnostic about UV degrees of freedom
Big desert Parametrize ignorance by inclusion of correction terms

9 or . i
hysics? 5 RV?R R? RV*R
new physics glR)7 g2 A2 953F7 g4 AL
Accuracy set by order of the expansion (if g; = O(1))
102 + Esm 1. Predictive: renormalization within finite truncation
0 * IR 2. Not fundamental: limited to £ < A

Asymptotic safety might provide a non-perturbative UV-completion of gravity

see talks by D. Litim and F. Saueressig
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f(R) models relevant in inflationary cosmology, [Starobinsky 1980], one-loop
divergences known on generic background [Ruf, cS 2018] but non-renormalizable
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Quadratic gravity perturbatively renormalizable and asymptotically free
[Utiyama, DeWitt (1962), Stelle (1977), Fradkin, Tseytlin (1982), Avramidi, Barvinsky (1985)]

S = Sen + /d4X\/—g [91R2 + g2 R R*" + g3 Ry po R |

Higher derivatives R? ~ 9*g lead to improved UV behaviour . ..

... but higher time derivatives also lead to new particles in the spectrum:
healthy spin-zero scalar and massive spin-two ghost — violation of unitarity
[Stelle (1977), Hawking (1985)]
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Sacrifice fundamental Lorentz invariance

Apparent tension between perturbative renormalizability and unitarity in
relativistic local quantum field theories of gravity

Improved UV behaviour in quadratic gravity due to higher derivatives but ghost
problem arises because of higher time derivatives

Ho¥ava gravity: Allow higher spatial derivatives 7% but restrict to 2,4 order
time derivatives 87 — obviously not compatible with relativistic invariance

Basic idea: Lorentz invariance broken in the UV but emergent in the IR!?
[Hotava (2009)]

IR: L Lorentz invariance restored

P
P = W — k2 — G (k2)* = Uuv: m anisotropic scaling parameter >

critical scaling: z =d



Geometric setting: foliation of spacetime in GR
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Geometric setting: foliation of spacetime in GR

Arnowitt-Deser-Misner: foliation of spacetime into spatial hypersurfaces 3;

ds® = g, (X)dX*dXY = N?dt® — ,;(dz’ + N'dt)(dz’ + N7dt)

Sttde N(t,z"): lapse function
N(t,z"): shift vector
(

i (t,2"): d-dim spatial metric

Extrinsic curvature: K;; = % (0vvij — ViN; — V,;N;)

Gauss-Codazzi: RP)(g) = Ki; K —K? + R (v)

2 ..
Spn = %/dtd%Nym(Kin%K% R(%) )
2 —_———

“kinetic term" “potential”
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Horava gravity

Fundamental Lorentz invariance broken: anisotropic scaling

t—b 7t zt bt i=1,..,d

Preferred time direction: invariance under foliation preserving diffeomorphisms

FDIff(M) : o' — Z'(&,t), t— i(t)

Projectable Hofava gravity in D = d + 1 for critical scaling z = d

_ 1 d.. 1/2 i 2 y,(d)
SHG_ZG/dtdx'y N(K”K AKZ— Y )

“kinetic term” potential

Less symmetry FDiff(M) vs. Diff(M) allows for more structure
V=2 — oA + uR?
V=3 — 9\ — R+ 1 R* + p2 Ri; R + 11 R® + 1, RRi; RV
+vsR ;R R*, + vaV;RV'R + vsV R, V' R™*
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Particle spectrum and phenomenology of Hofava gravity
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ii.) “Projectable”: N(t) global time slicing, gauge N =1

Additional propagating gravitational scalar d.o.f compared to GR (here d = 3)
wng = 77k2 + p2k4 + vsk® ,
1

- A
wi = T [— nk® 4 (81 + 3p2)k* 4 (8va + 3V5)k6]

Scalar mode not a ghost: A < 1/3 or A > 1, but tachyonic IR instability

“"healthy extension”: add relevant a’a; operator (non-projectable version)
[Blas, Sibiryakov, Pujolas (2010)]

Strongest observational constraints from PPN and speed of gravitational waves

Non-projectable model still phenomenological viable
[Giimriikgiioglu, Saravani, Sotiriou (2018)]
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Renormalizability of Horava gravity

1. Absence of spurious non-local divergences <+ regular propagators:
Requires non-local gauge fixing [Barvinsky, Blas, Herrero-Valea, Sibiryakov, CS (2016)]

P x [Aw2 — Bde]fl, a,8>0
2. Finite set of counterterms <+ power counting:
Order-by-order subtraction works as in relativistic case [Anselmi (2009)]

D&Y =2d—dT — X — (d—1)In, D < 0 diagram convergent

3. Gauge invariance of counterterms <> manifest FDiff covariant formulation:

BF method+BRST formalism [Barvinsky, Blas, Herrero-Valea, Sibiryakov, CS (2018)]

1
Dy = (0 —Lg), Vi=0:i+T:i(y),

Kij = 2Dyvij, Rijri, ai=V;InN

Projectable Hofava gravity is perturbatively renormalizable (for any D)
[Barvinsky, Blas, Herrero-Valea, Sibiryakov, CS (2016)]
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In addition to renormalizability: need to know RG flow for UV complete theory
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One-loop divergences of 2 + 1 projectable Hofava gravity

In addition to renormalizability: need to know RG flow for UV complete theory

Focus on D = 2 4 1: only scalar mode present (no spin-2 as R topological)

7i 2 1/2 . 7,]7 27 2
SHG_ZG/dtdm N{K”K ANK MR}

RG flow of A: no Landau pole and connection to “relativistic” IR limit A — 1

Explicit one-loop calculation required

One-loop renormalization of G, A and y via
BF method (only two-point functions)

Only X and combination G = G/, /1 are
essential couplings — inessential couplings

% @ O can be changed by field redefinitions

14



RG flow of 2 4 1 projectable Hotava gravity
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Two fixed points at (1/2,0) and (15/14,0)

D = 2+ 1 projectable HoFava gravity is asymptotically free
[Barvinsky, Blas, Herrero-Valea, Sibiryakov, CS (2017)]
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D = 2+ 1 projectable HoFava gravity is asymptotically free
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naturally cut-off the strong coupling of G in the IR
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D = 2+ 1 projectable HoFava gravity is asymptotically free
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UV fixed point features RG trajectories approaching A = 1 in the IR

In D =341, TT modes are present and relevant operators are expected to
naturally cut-off the strong coupling of G in the IR

Results for one-loop beta functions of kinetic couplingsin D =3+ 1
projectable HoFava gravity [Barvinksy, Herrero-Valea, Sibiryakov (2019)]
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Projectable Ho¥ava-Lifshitz gravity in D = 2 4 1 is asymptotically free
[Barvinsky, Blas, Herrero-Valea, Sibiryakov, CS (2017)]

Extension of heat-kernel techniques to anisotropic Lifshitz theories
[Nesterov, Solodukhin (2011), D‘Odorico, Saueressig, Schutten (2014), Barvinsky, Blas, Herrero-Valea, Nesterov,
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Full one-loop RG flow of essential couplings in D = 3 + 1 required
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Thank you!



Backup slide: Non-local gauge fixing

Modified relativistic (harmonic) gauge condition [F'] = 2d — 1:
Lot = F'O,; F7 F'=n'+ L0790k, — 207170k

Anisotropic scaling requires non-local operator: [O;;] = —2(d — 1)
Oij = =AW [5;A +£0,0,], £# -1

Non-local terms only remain in shift-shift sector (here d = 2).

d=2 1 [h  AR? 1 k 3 PYEN
C(g) «I»Cgf:?{ 4J 77*58 h”AE) hir + M+E (8 ajhij)
_ (2H+ /\(gijg))Ahalajhij + (ﬂ+ %{jé))(Ah)Q

. ) n7)? )
— o' [6;A + €8;0;] R + % + (% - A) (&nl)ﬂ
Can be localized by “integrating in" the auxiliary “Nakanishi-Lautrup” field m

o (Dtni) O,; (Dinj) — QLM [(’)_l}ij T = im(Dtni)
o
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Backup slide: Integral convergence and regular propagators

Individual integrals over frequency or momentum can diverge despite Dgiy < 0

L
I = /dw(l) 44 k:(l) /H[dw(l)ddk(l)]f({w(l)},{k(l)}), [[} = Dyiv < 0
=2

:f(w(l),k(l))x convergent, [f]=Dgq;v —2d
—1 —d—dn+Dagjyv _ —1-n ,—d+dn+Dgjy
Flwy k) =wyy ™ ka) woor flwaykay) =wa) " k) ¢

In relativistic case f(w, k) = f(p) depends only on combination p? = w? + k?

Regular propagators: scaling [{¢1(t, x), $2(0))] = 71 + 72 [Anselmi (2009)]

P(w, k) o
(1, p2) = Z D(w’ R D= H [Ap 0 + B k* + ..., A, Bm >0,
? m=1

P(w, k) polynomial in w and k with scaling [P] =r1 + 72 + 2(M — 1)d

_ 2 1—A 471
Ps(p) = {w +4/L172/\k:|
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