Seiberg-like Dualities for 2d Gauge Theories with a Boundary

Urmi Ninad
Universität Bonn

September 25, 2019

Based on ongoing work with Hans Jockers and Mauricio Romo
Talk for the DESY Theory Workshop 2019

Outline

Introduction to Gauged Linear Sigma Models (GLSMs)

Dualities of Non-Abelian GLSMs

Extending Dualities to GLSMs with a Boundary

An Example

Summary and Outlook

Introduction to GLSMs

GLSMs are $\mathcal{N}=(2,2)$ gauge theories in 2 d with $U(1)$ R-symmetry [Witten '93]

Gauge group $\mathrm{G}=\left(U(1)^{\ell} \times K\right) / \Gamma$
(K : Product of semi-simple groups, Γ : Discrete group)
Spectrum : 1. Chiral Field (Φ) in a repr. of G
2. Vector Field (V) in the adjoint repr. of G

GLSM data can be modelled s.t. the RG flow to the infrared results in an $\mathcal{N}=(2,2)$ SCFT.

—Dualities of Non-Abelian GLSMs

Dualities of Non-Abelian GLSMs

Amongst certain non-abelian GLSMs, there exist non-trivial dualities [Hori,Tong '07], [Hori '13]

Example: $\circ \mathrm{GLSM}$ with $\mathrm{G}=\operatorname{SU}(k)$ and N fundamentals Φ_{i}
Gauge invariant d.o.f.:

$$
B_{i_{1} \ldots i_{k}}=\epsilon_{\alpha_{1} \ldots \alpha_{k}} \Phi_{i_{1}}^{\alpha_{1}} \ldots \Phi_{i_{k}}^{\alpha_{k}} \quad \#:\binom{N}{k}
$$

- $\widetilde{\text { GLSM }}$ with $\mathrm{G}=\mathrm{SU}(N-k)$ and N fundamentals $\widetilde{\Phi}_{i}$ Gauge invariant d.o.f.:

$$
\widetilde{B}_{i_{1} \ldots i_{N-k}}=\epsilon_{\alpha_{1} \ldots \alpha_{N-k}} \widetilde{\Phi}_{i_{1}}^{\alpha_{1}} \ldots \widetilde{\Phi}_{i_{N-k}}^{\alpha_{k}} \quad \#:\binom{N}{N-k}
$$

Check: Sphere partition function of dual theories coincide
[Benini, Cremonesi '14]
Remarks: 1. Similar to $\mathcal{N}=14 d$ Seiberg Duality
2. Dualities also exist for $\mathrm{O}(k)$ and $\mathrm{USp}(2 k)$ gauge groups

A 'Geometric' Duality

We consider an example of a duality motivated by the target spaces of the GLSMs being geometric duals:

$$
\operatorname{Gr}(k, N) \simeq \operatorname{Gr}(N-k, N)
$$

Recall: $\operatorname{Gr}(k, N)$ is the space of complex k-planes in an N-dimensional ambient space; $\operatorname{dim}_{\mathbb{C}}(\operatorname{Gr}(k, N))=k \cdot(N-k)$

The duality is understood by associating a complex k-plane in \mathbb{C}^{N} to its orthogonal complement, i.e. an $(N-k)$-plane.

Duality: $\circ \mathrm{G}=\mathrm{U}(k)$ and N flavours Φ_{i} in the repr. \square_{1} Target Space: $\operatorname{Gr}(k, N)$

- $\mathrm{G}=\mathrm{U}(N-k)$ and N flavours $\widetilde{\Phi}_{i}$ in the repr. \square_{1}

Target Space: $\operatorname{Gr}(N-k, N)$

Dualities of GLSMs with a Boundary

Duality discussion so far has centred on GLSMs without boundary. What is the effect of duality on boundaries of GLSMs?

GLSM on a Riemann surface with a boundary generically preserves only half of the susy (A- or B-type).
A supersymmetric action is typically invariant under a susy transformation upto a total derivative term Δ.
Δ non-vanishing for theory with a boundary \Rightarrow 'Warner Problem'

The Warner Problem

$$
\Delta=\delta_{\text {susy }} \cdot \int_{D} d^{2} z d^{2} \theta W(\Phi)=\int_{\partial D} d \sigma d \theta W\left(\left.\Phi\right|_{\partial D}\right)
$$

To restore susy a term is added at the boundary of the form:

$$
S_{\partial D}=-\int_{\partial D} d \sigma d \theta\left(\pi \cdot J\left(\left.\Phi\right|_{\partial D}\right)\right)
$$

where π are fermions at the bdy that satisfy: $\delta_{\text {susy }} \cdot \pi=E\left(\left.\Phi\right|_{\partial D}\right)$ and J, E are functions s.t. $J(\Phi) \cdot E(\Phi)=W(\Phi)$.
Then

$$
\delta_{\text {susy }} S_{\partial D}=-\int_{\partial D} d \sigma d \theta W\left(\left.\Phi\right|_{\partial D}\right)=-\Delta \cdot \checkmark \text { (susy restored) }
$$

The boundary d.o.f. can be represented as:

$$
Q(\Phi)=J(\Phi) \pi+E(\Phi) \bar{\pi}, \text { s.t. } Q^{2}(\Phi)=J(\Phi) \cdot E(\Phi)=W(\Phi)
$$

Defects between GLSMs

Check of boundary duality: Compare Hemisphere Partition functions:

$$
Z_{H^{2}}\left(\operatorname{GLSM}_{Q}\right)=Z_{H^{2}}\left({\widetilde{\operatorname{GLSM}_{\widetilde{Q}}}}_{\tilde{L}}\right)
$$

[Hori,Romo '13]
[Honda, Okuda '13]
\rightarrow We aim for a stronger check: Categories of B-type boundary conditions on dual GLSMs must be equivalent.
In doing so, we first separate the two GLSMs with a 'defect'.

Corresponding to the defect, we construct an explicit map FM,

$$
\text { FM : Bdy } 2 \rightarrow \text { Bdy } 1
$$

This map is known as the Fourier-Mukai Kernel.

The Fourier-Mukai Kernel

Fourier-Mukai Kernel from theory B to A is a map s.t.,

$$
\text { FM : Bdys of } B \rightarrow \text { Bdys of } A
$$

$$
\mathscr{B} \mapsto \mathscr{A}
$$

More explicitly, consider the product of dual boundary theories and respective projections to individual theories:

Then the map FM corresponds to an object $\varphi_{\text {FM }} \in \operatorname{Bdys}$ of $(A \times B)$,

$$
p_{1 *}\left(\varphi_{\mathrm{FM}} \otimes \mathrm{p}_{2}^{*}(\mathscr{B})\right)=\mathscr{A} .
$$

$\Rightarrow F M$ acts as an integration kernel that maps bdys from B to $A_{厄}$

The Fourier-Mukai Kernel II: Application

How does the narrative of defects between dual GLSMs connect to their boundary d.o.f.?
Recall, boundary d.o.f of a GLSM $\equiv Q(x)$, with $Q^{2}(x)=W(x)$.

Since the defect is just a boundary in the product theory:

\Rightarrow Defect d.o.f. between GLSM_{1} and $\mathrm{GLSM}_{2} \equiv Q\left(x_{1}, x_{2}\right)$, with

$$
Q^{2}\left(x_{1}, x_{2}\right)=W\left(x_{1}\right)-W_{2}\left(x_{2}\right)
$$

Example: Grassmannian Duality

For the Grassmannian duality, $\operatorname{Gr}(k, N) \simeq \operatorname{Gr}(N-k, N)$, we consider the duality transformation on the defect:

Matter	$(U(k) \times U(k))$ Rep.
x_{i}	$\left(\square_{1}, 1_{0}\right)$
y_{i}	$\left(1_{0}, \square_{1}\right)$
\mathcal{M}	$\left(\square_{1}, \square_{-1}\right)$
π	$\left(\square_{-1}, 1_{0}\right)$

Matter	$(U(k) \times U(N-k))$ Rep.
x_{i}	$\left(\square_{1}, 1_{0}\right)$
\widetilde{y}_{i}	$\left(1_{0}, \square_{1}\right)$
π^{\prime}	$\left(\square_{-1}, \square_{-1}\right)$

$Q_{1}=(x+y \mathcal{M}) \pi$

$$
\begin{aligned}
Q_{2} & =(x \cdot \tilde{y}) \pi^{\prime} \\
Q_{2}^{2} & =0
\end{aligned}
$$

Categories of bdy conditions are shown to be equivalent.

Summary and Outlook

Summary
GLSMs and Seiberg-like dualities thereof
Extension of dualities to GLSMs w/ boundary: Fourier-Mukai Kernel
Outlook
Analyse dualities in quiver gauge theories leading to cluster algebras. Strengthen the cluster algebra proposal by an extension to theories with a boundary.
[Benini et al '14]
Extend dualities to boundary GLSMs with other gauge groups that are Seiberg-like-dual, eg. USp(2k).
Realise derived equivalences of target spaces relevant from a string compactification point of view.

Thank You

Questions/Comments?

