Strongly interacting dark sectors in the early Universe and at the LHC

Elias Bernreuther

RWTH Aachen University

based on arXiv:1907.04346

with Felix Kahlhoefer, Michael Krämer and Patrick Tunney

26 September 2019

after the Higgs Discovery

Strongly interacting dark sectors

- Idea: What if the dark sector resembles QCD?
 ⇒ DM could be meson/baryon in confining dark sector
- Relic density from interactions within dark sector Hochberg et al., 1411.3727
- Possible resolution of DM small-scale problems (SIDM)
 Hochberg et al., 1402.5143
- Novel collider pheno:
 - dark showers
 - semi-visible jets
 - emerging jets

Cohen et al., 1707.05326 Schwaller et al., 1502.05409

Cosmologically viable and interesting for LHC?

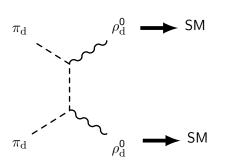
Model setup

$$SU(3)_{
m dark} \times U(1)'_{
m mediator}$$

ullet 2 flavours of dark quarks $q_{
m d}$

ullet Z' mediator $\sim \mathcal{O}(\mathrm{TeV})$ coupling to q_{SM} and q_{d}

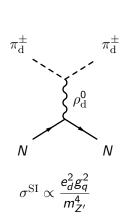
confinement at Λ_d

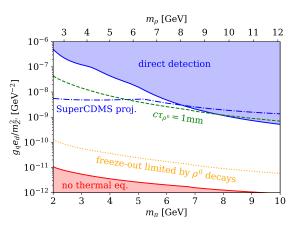

- π_d^0 , π_d^{\pm} , ρ_d^0 , $\rho_d^{\pm} \sim \mathcal{O}(\text{GeV})$
- Dark pions are DM (stable)
- $Z'\pi_{\rm d}^+\pi_{\rm d}^-$, $Z'\rho_{\rm d}^+\rho_{\rm d}^-$ coupling
- $\bullet \ Z' \hbox{-} \rho_{\rm d}^0 \ {\rm mixing} \Rightarrow \rho_{\rm d}^0 \ {\rm unstable}$

Dark meson stability

- ullet Charged pion stability protected by U(1)' charge
- $\pi_{
 m d}^0$ generically unstable $(\pi_{
 m d}^0 o Z'^*Z'^* o {\sf SM}$ hadrons)
 - ightarrow dangerous in early universe (relic density, BBN, CMB ...)
 - ightarrow stabilised by G_d -parity if N_F even and $Q \propto {
 m diag}(1,-1)$ Berlin et al., 1801.05805
- ullet $ho_{
 m d}^{\pm}$ effectively stable if $m_{
 ho} < 2 m_{\pi}$
- $ho_{
 m d}^0\text{-}Z'$ mixing induces $ho_{
 m d}^0$ decays to $q_{
 m SM}ar{q}_{
 m SM}$
 - $ightarrow \ c au_{
 ho^0} pprox 3.2 \ \mathrm{mm} imes \left(rac{g_q}{0.01}
 ight)^{-2} \left(rac{e_d}{0.4}
 ight)^{-2} \left(rac{m_
 ho}{5 \ \mathrm{GeV}}
 ight)^{-5} \left(rac{m_{Z'}}{1 \ \mathrm{TeV}}
 ight)^4$

Freeze-out

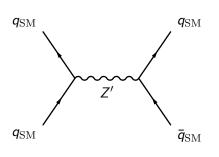

- ullet $ho_{
 m d}$ in equilibrium in early Universe if $\Gamma_{
 ho^0}>H$
- π_{d} - ρ_{d} decoupling sets DM relic density
- Dominant freeze-out process: $\pi_{\rm d}\pi_{\rm d}\to \rho_{\rm d}\rho_{\rm d}$ (forbidden DM, D'Agnolo et al., 1505.07107)



$$\sigma_{\pi\pi o
ho
ho}\proptorac{g^2}{m_\pi^2}\;e^{-2\Delta\mathsf{x}_f} \ \Delta=rac{m_
ho-m_\pi}{m_\pi}\sim0.2$$
 - 0.5

ullet Relic density can be easily produced by adjusting $m_
ho/m_\pi.$

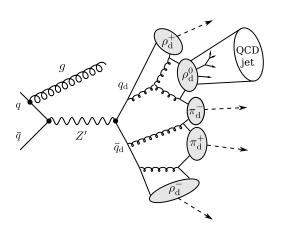
Direct detection



Combination of CRESST-III, CDMSLite, PICO-60, PandaX and XENON1T

Di-jet

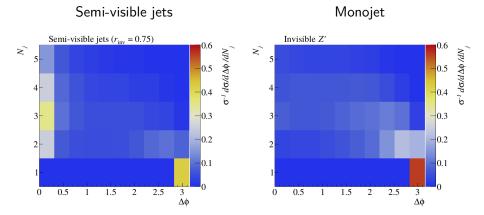
- At LHC resonant Z' production, then ...
- ullet Standard possibility: $Z' o q_{
 m SM} ar q_{
 m SM}$



ATLAS-CONF-2019-007

• BR
$$(Z' \to q_{\rm SM} \bar{q}_{\rm SM}) \propto \frac{6 \times 3 \times g_q^2}{6 \times 3 \times g_q^2 + 2 \times 3 \times e_d^2}$$

Dark showers

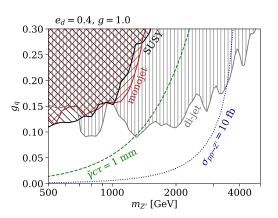

- ullet More exciting: production of dark quarks, $pp o Z' o q_dar q_d$
- Shower and hadronisation in dark sector (PYTHIA HIDDEN VALLEY)

- $\mathcal{O}(20)$ dark mesons
- $ullet
 ho_{
 m d}^0$ decay to SM jets
- Other dark mesons are $\not E_T$
- \Rightarrow Semi-visible jets $r_{\text{inv}} = 0.75$

Semi-visible jets

- Signature: jets $+ \cancel{E}_T$
- But missing E_T tends to be aligned with the jets
- Characteristic observable: angular separation $\Delta \phi = \min_{i \leq 4} \left\{ \Delta \phi_{j_i, \mathcal{E}_T} \right\}$

Traditional missing energy searches

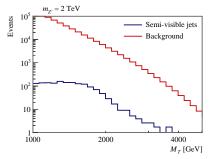

To target events with large $\Delta \phi$:

 \Rightarrow Recast missing- E_T searches with CHECKMATE and MADANALYSIS

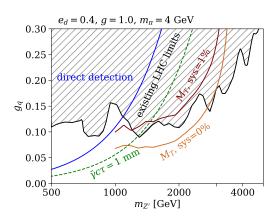
- ATLAS monojet search, 36.1 fb^{-1} (CHECKMATE)
 - Invisible dark shower recoils against ISR jet
 - Or partially visible dark showers give energetic jet

- CMS squark and gluino search, 35.9 fb⁻¹ (MADANALYSIS)
 - Two dark showers partially visible
 - Two hemispheres with jets and missing energy in both

Traditional missing energy searches


- Missing E_T searches best at low $m_{Z'}$, dijets at large $m_{Z'}$
- \bullet Large unconstrained parameter space with displaced ρ^0 decays and sizeable cross section

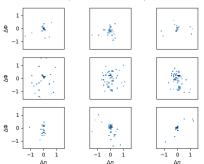
Prospective search for semi-visible jets


To target events where missing E_T is aligned with jets:

• Search for peak in M_T :

- Cohen et al. 1707.05326
- Recluster jets into two large jets (R = 1.1)
- Inverted angular cut: $\Delta \phi < 0.4$
- Bump hunt in $M_T = \left(M_{jj}^2 + 2\left(\sqrt{M_{jj}^2 + p_{Tjj}^2} \vec{\mathcal{E}}_T \vec{p}_{Tjj} \cdot \vec{\mathcal{E}}_T\right)\right)^{1/2}$

Prospective search for semi-visible jets

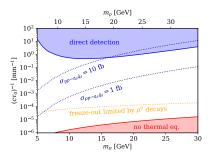


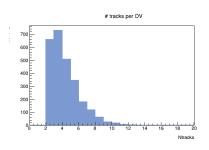
- Difficult to find with bump hunt in M_T
 (variation in dark meson production, systematics)
 More elaborate strategy peoded
 - \Rightarrow More elaborate strategy needed
- LHC complementary to direct detection

Outlook: machine learning for dark showers

[Thorben Finke]

- ullet M_T search does not use jet substructure information
- Interesting tool: deep learning
- Example for unsupervised approach: autoencoder for jet images Heimel et al., 1808.08979; Farina et al., 1808.08992




• Challenge: jets qualitatively similar to QCD jets

Outlook: displaced vertices

[Juliana Carrasco]

ullet $g_q \lesssim 0.1$: displaced vertices from $ho_{
m d}^0$ with detector-size decay lengths

- DV searches require MET and sufficient number of tracks
- Develop dedicated strategy for displaced dark mesons

Conclusions

- Strongly interacting dark sectors: cosmologically viable and interesting for the LHC
- Freeze-out within dark sector through forbidden annihilations
- At the LHC:
 - Di-jets
 - Traditional missing E_T searches
 - Prospective search for semi-visible jets (more work to be done, CMS search in preparation)
- Ongoing projects:
 - Displaced semi-visible / emerging jets
 - Deep learning for dark showers

Backup

Dark SU(3)

The Lagrangian of the underlying dark SU(3) gauge theory coupled to Z' reads

$$\begin{split} \mathcal{L} &= -\,\frac{1}{4}F_{\mu\nu}^a F^{\mu\nu,a} + \overline{q_{\rm d}} i \not \!\! D q_{\rm d} - \overline{q_{\rm d}} M_q q_{\rm d} \\ &- \frac{1}{4}Z'_{\mu\nu}Z'^{\mu\nu} + \frac{1}{2}m_{Z'}^2 Z'_\mu Z'^\mu - g_q \, Z'_\mu \, \sum_{q_{\rm SM}} \overline{q_{\rm SM}} \gamma^\mu q_{\rm SM} \; , \end{split}$$

where $q_{\rm d}=(q_{\rm d,1},q_{\rm d,2})$ and $M_q={\sf diag}(m_q,m_q)$. The dark quark covariant derivative has the form

$$D_{\mu}q_{\mathrm{d}} = \left(\partial_{\mu} + ig_{D}A_{\mu} + ie_{D}Z'_{\mu}Q\right)q_{\mathrm{d}} \; ,$$

Chiral EFT

The chiral EFT Lagrangian (up to fourth order in the pion fields) is given by

$$\mathcal{L}_{\text{EFT}} = \text{Tr} \left(D_{\mu} \pi D^{\mu} \pi \right) - \frac{2}{3f_{\pi}^{2}} \text{Tr} \left(\pi^{2} D_{\mu} \pi D^{\mu} \pi - \pi D_{\mu} \pi \pi D^{\mu} \pi \right)
+ m_{\pi}^{2} \text{Tr} \left(\pi^{2} \right) + \frac{m_{\pi}^{2}}{3f_{\pi}^{2}} \text{Tr} \left(\pi^{4} \right) + \mathcal{O} \left(\frac{\pi^{6}}{f_{\pi}^{4}} \right)
- \frac{1}{4} \text{Tr} \left(V_{\mu\nu} V^{\mu\nu} \right) + m_{V}^{2} \text{Tr} \left(V^{2} \right) - \frac{e_{d}}{g} Z'_{\mu\nu} \text{Tr} \left(Q V^{\mu\nu} \right) .$$
(1)

The pion covariant derivative is given by

$$D_{\mu}\pi = \partial_{\mu}\pi + ig\left[\pi, V_{\mu}\right] + ie_{\mathrm{d}}\left[\pi, Q\right] Z_{\mu}'$$
 .

Mixing

$$\begin{pmatrix} \tilde{Z}' \\ \tilde{\rho}_0 \end{pmatrix} = \begin{pmatrix} \sec \epsilon & \sin \epsilon \, \frac{m_\rho^2}{m_{Z'}} \\ -\tan \epsilon + \frac{1}{2} \sin 2\epsilon \, \frac{m_\rho^2}{m_{Z'}^2} & 1 - \sin^2 \epsilon \, \frac{m_\rho^2}{m_{Z'}^2} \end{pmatrix} \begin{pmatrix} Z' \\ \rho^0 \end{pmatrix} , \quad (2)$$

where $\epsilon = \arcsin(2 e_d/g)$.

$$\mathcal{L}_{\mathsf{EFT}} \supset \frac{2 \, e_{\mathrm{d}} \, g_q}{g} \frac{m_{
ho}^2}{m_{Z'}^2} \rho_{\mu}^0 \sum_{q_{\mathrm{SM}}} \overline{q_{\mathrm{SM}}} \gamma^{\mu} q_{\mathrm{SM}} \,.$$
 (3)

$$\mathcal{L}_{\mathsf{EFT}} \subset \left(-2 \, e_{\mathrm{d}} \sqrt{1 - \frac{4 \, e_{\mathrm{d}}^2}{g^2}} \frac{m_{\rho}^2}{m_{Z'}^2} Z'_{\mu} + g \, \rho_{\mu}^0 \right) \left[\pi^+ \left(\partial^{\mu} \pi^- \right) - \left(\partial^{\mu} \pi^+ \right) \pi^- \right] \; . \tag{4}$$

Dark meson stability

- Charged pions stable
- \bullet π^0 generically unstable
 - ightarrow extremely dangerous in early universe (CMB, BBN, relic density, . . .)
 - ightarrow stabilised by G_d -parity if N_F even and $Q \propto {
 m diag}(1,-1)$
- ullet ho^\pm effectively stable if $m_
 ho < 2 m_\pi$ (tiny three-body decay width)
- $ho^0\text{-}Z'$ mixing induces ho^0 decays to $q_{\mathrm{SM}}ar{q}_{\mathrm{SM}}$
 - $ightarrow \ c au_{
 ho^0}pprox 3.2 \ \mathrm{mm} imes \left(rac{g_q}{0.01}
 ight)^{-2} \left(rac{e_d}{0.4}
 ight)^{-2} \left(rac{m_
 ho}{5 \ \mathrm{GeV}}
 ight)^{-5} \left(rac{m_{Z'}}{1 \ \mathrm{TeV}}
 ight)^4$

Search details: missing E_T

Monojet:

- anti- k_T with R = 0.4
- *₱* _T > 250 GeV
- $p_T > 250$ GeV for the leading jet
- at most four jets with $p_T > 30$ GeV
- $\Delta \phi > 0.4$

CMS squarks and gluinos:

- at least 2 jets are required
- $\not\!\!E_T > 300 \text{ GeV}$ and $H_T > 300 \text{ GeV}$
- $\Delta \phi(j, \not\!\! E_T) > 0.5$ for the two leading jets
- $\Delta \phi(j, \not\!\! E_T) > 0.3$ for the third and fourth jet
- Each signal region is defined by the combination of an $\not\!\!E_T$ range and an H_T range.

Search details: missing E_T

Monojet:

- anti- k_T with R = 0.4
- *₱* _T > 250 GeV
- $p_T > 250$ GeV for the leading jet
- at most four jets with $p_T > 30 \text{ GeV}$
- $\Delta \phi > 0.4$

CMS squarks and gluinos:

- at least 2 jets are required
- $\not\!\!E_T > 300 \text{ GeV}$ and $H_T > 300 \text{ GeV}$
- $\Delta \phi(j, \not\!\! E_T) > 0.5$ for the two leading jets
- $\Delta \phi(j, \not\!\! E_T) > 0.3$ for the third and fourth jet
- Each signal region is defined by the combination of an $\not\!\!E_T$ range and an H_T range.

Search details: M_T

•
$$M_T = \left(M_{jj}^2 + 2\left(\sqrt{M_{jj}^2 + p_{Tjj}^2} \not\!\!E_T\right) - \vec{p}_{Tjj} \cdot \vec{\not\!E}_T^{\text{miss}}\right)^{1/2}$$

- ₱ T > 200 GeV
- ullet at least two jets with $ho_T > 100$ GeV and $|\eta| < 2.4$
- ullet re-clustered with CA algorithm and R=1.1
- $\not\!\!E_T/M_T > 0.15$
- $|\eta_{j_1} \eta_{j_2}| < 1.1$
- ullet $\Delta \phi <$ 0.4 between the missing energy vector and at least one jet