Flavour constraints on MFV SMEFT

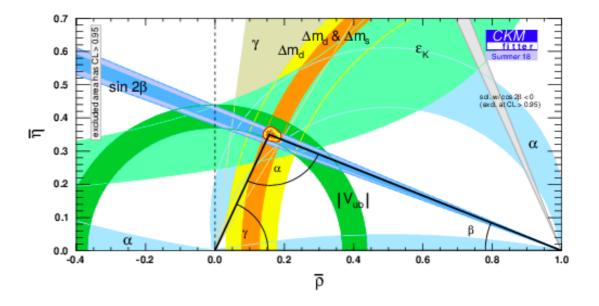
Rafael Aoude, Tobias Hurth, Sophie Renner and William Shepherd

hep-ph/1903.00500 hep-ph/1910.XXXX

Unterstützt von / Supported by

JOHANNES GUTENBERG

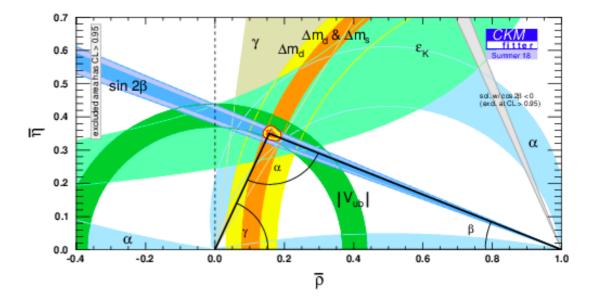
JGU


MAINZ

Alexander von Humboldt Stiftung/Foundation

Two facets of flavor constraints

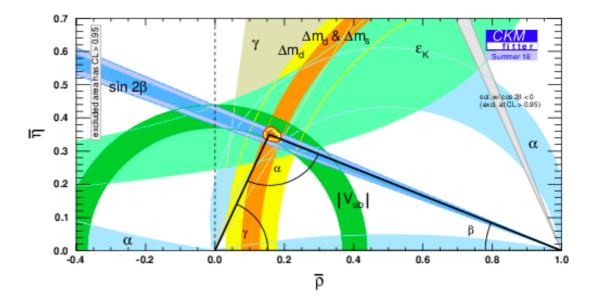
Flavour constraints do not give us much room for NP...


Model builders "use" MFV to escape from flavor constraints

Two facets of flavor constraints

Flavour constraints do not give us much room for NP...

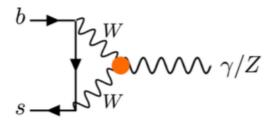
Model builders "use" MFV to escape from flavor constraints



Full one-loop matching from SMEFT to operators below weak scale mediating $d_i \rightarrow d_j \gamma$, $d_i \rightarrow d_j l^+ l^-$ and meson mixing

Two facets of flavor constraints

Flavour constraints do not give us much room for NP...


Model builders "use" MFV to escape from flavor constraints

Full one-loop matching from SMEFT to operators below weak scale mediating $d_i \rightarrow d_j \gamma$, $d_i \rightarrow d_j l^+ l^-$ and meson mixing

One loop matching

"EW" WCs in the Flavour observables

What does flavor tell us about this WCs?

Can we improve the constraints?

SM (EFT) and its flavors

SM only Yukawas break the flavor $U(3)^5$ symmetry ... FCNC only at loop level BSM Minimal Flavour Violation: yukawas are the only source of this breaking SMEFT too much flavor... $N_f=1,2,3 o 76,\,582,\,2499$ $U(3)^5$ flavour symmetry, only broken by quark Yukawa ... reduces to 59 (CP-even) ops.

SMEFT and its flavors

$U(3)^5 = U(3)_{Q_L} \times U(3)_{u_R} \times U(3)_{d_R} \times U(3)_{L_L} \times U(3)_{e_R}$

 $Q_L \sim (3, 1, 1, 1, 1)$ $u_R \sim (1, 3, 1, 1, 1)$ $d_R \sim (1, 1, 3, 1, 1)$

 $Y_u \sim (3, \overline{3}, 1, 1, 1)$ $Y_d \sim (3, 1, \overline{3}, 1, 1)$

SMEFT and its flavors

$$U(3)^5 = U(3)_{Q_L} \times U(3)_{u_R} \times U(3)_{d_R} \times U(3)_{L_L} \times U(3)_{e_R}$$

$$Q_L \sim (3, 1, 1, 1, 1)$$
 $u_R \sim (1, 3, 1, 1, 1)$ $d_R \sim (1, 1, 3, 1, 1)$


 $Y_u \sim (3, \overline{3}, 1, 1, 1)$ $Y_d \sim (3, 1, \overline{3}, 1, 1)$

Transformation under	Example	W.C	W.C. with
$U(3)_Q \times U(3)_{u_R} \times U(3)_{d_R}$			only y_b, y_t nonzero
(1, 1, 1)	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{Q}_{i}\gamma^{\mu}Q_{j})$	$\propto \delta_{ij}$	$\propto \delta_{ij}$
$(ar{3},3,1)$	$(\bar{Q}_i \sigma^{\mu\nu} u_j) B_{\mu\nu}$	$\propto (Y_u)_{ij}$	$\propto y_t \delta_{i3} \delta_{j3}$
$(ar{3},1,3)$	$(\bar{Q}_i \sigma^{\mu\nu} d_j) B_{\mu\nu}$	$\propto (Y_d)_{ij}$	$\propto y_b V_{3i} \delta_{j3}$
$(1,ar{3},3)$	$i(\tilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{i}\gamma^{\mu}d_{j})$	$\propto (Y_u^\dagger Y_d)_{ij}$	$\propto y_t y_b V_{33} \delta_{i3} \delta_{j3}$
(8, 3, 3)	$(\bar{Q}_i^{\alpha}u_j)\epsilon_{\alpha\beta}(\bar{Q}_k^{\beta}d_l)$	$\propto (Y_u)_{ij}(Y_d)_{kl}$	$\propto y_t y_b V_{3k} \delta_{i3} \delta_{j3} \delta_{l3}$

furthermore $\hat{Y}_u \approx (0, 0, y_t)$ $\hat{Y}_d \approx (0, 0, y_b)$

SMEFT

Ilaria's talk

Goal: WET at mB as a linear combination of SMEFT in the UV

* also called LEFT

Weak Effective Theory

(aka Low-Energy Effective Field Theory - LEFT)

$$\mathcal{H}_{\text{eff}}^{|\Delta B|=|\Delta S|=1} = \frac{4\hat{G}_F}{\sqrt{2}} \left[-\frac{1}{(4\pi)^2} \hat{V}_{ts}^* \hat{V}_{tb} \sum_{i=3}^{10} C_i \mathcal{O}_i + \sum_{q=u,c} \hat{V}_{qs}^* \hat{V}_{qb} \left(C_1 \mathcal{O}_1^q + C_2 \mathcal{O}_2^q \right) \right]$$

Our Flavour assumption $U(3)^5 + Y_u, Y_d$

give us SM-like results

same CKM, no RH currents, GIM

4 WET operators

FCNC B mesons decays

$$\begin{aligned} \mathcal{O}_{1}^{q} &= (\bar{b}^{\alpha} \gamma_{\mu} P_{L} q^{\beta}) (\bar{q}^{\beta} \gamma^{\mu} P_{L} s^{\alpha}), \\ \mathcal{O}_{2}^{q} &= (\bar{b}^{\alpha} \gamma_{\mu} P_{L} q^{\alpha}) (\bar{q}^{\beta} \gamma^{\mu} P_{L} s^{\beta}), \\ \mathcal{O}_{7} &= \hat{e} \hat{m}_{b} \left(\bar{s} \sigma^{\mu \nu} P_{R} b \right) F_{\mu \nu}, \\ \mathcal{O}_{8} &= \hat{g}_{s} \hat{m}_{b} \left(\bar{s} \sigma^{\mu \nu} T^{A} P_{R} b \right) G^{A}_{\mu \nu}, \\ \mathcal{O}_{9} &= \hat{e}^{2} \left(\bar{s} \gamma^{\mu} P_{L} b \right) \left(\bar{\ell} \gamma_{\mu} \ell \right), \\ \mathcal{O}_{10} &= \hat{e}^{2} \left(\bar{s} \gamma^{\mu} P_{L} b \right) \left(\bar{\ell} \gamma_{\mu} \gamma_{5} \ell \right). \end{aligned}$$

same for ds

Related results

Some operators only...

Grzadkowski & Misiak, 0802.1413 Drobnak, Fajfer, Kamenik 1102.4347, 1109.2357 Bobeth & Haisch 1503.04829 Endo, Kitahara, Ueda 1811.04961 focus on a particular vertex and few ops

Different flavour assumptions ...

Aebischer, Crivellin, Fael & Greub, 1512.02830

• allows for tree level FCNC

• Loop level for only right-handed up type quarks

Recently, full one-loop matching

Denkes & Stoffer, 1908.05295

so far (first paper), only full symmetric...

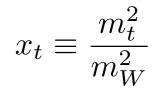
 $U(3)^5 + Y_u, Y_d$ $U(3)^{5}$ FCNC B decays FCNC B decays $b \to s\gamma$ $b \to s\gamma$ $b \rightarrow s l^+ l^$ $b \rightarrow s l^+ l^-$ Meson mixing Meson mixing ... same for ds ... same for ds +neutrino observables $B \to V \nu \bar{\nu}$ $K_L \to \pi^0 \nu \bar{\nu} \quad K \to \pi \nu \bar{\nu}$ SMEFT ops Groups: 1,2,3,4,7,8 SMEFT ops Groups: same + 5,6,7,8

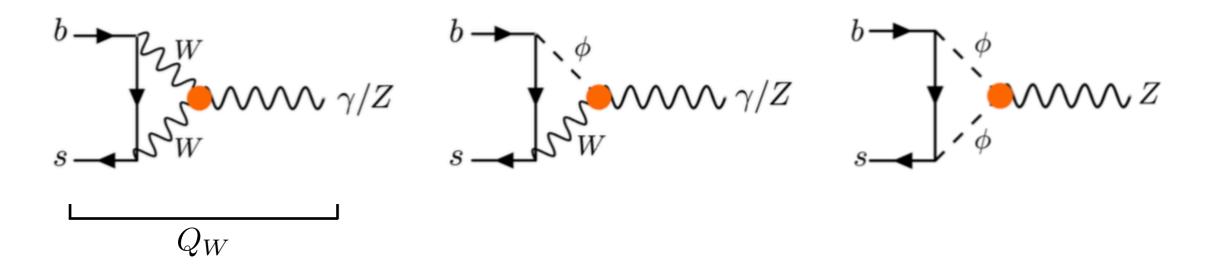
Operators for $U(3)^5$

* via input parameters

Group	Operators	$d_i \rightarrow d_j \gamma$	$d_i \rightarrow d_j l^+ l^-$	Meson mixing	-	
1	Q_G	-	-	-	Purely bosonic	
	Q_W	~	~	-		
2	Q_H	-	-	-	$b \rightarrow \mathcal{L}_W$	
3	$Q_{H\square}$	-	-	-	γ	
	Q_{HD}	~	~	-	$b \longrightarrow W$ $s \longrightarrow W$ $w \rightarrow w$	
4	Q_{HG}	-	-	-		
	Q_{HW}	-	-	-		
	Q_{HB}	-	-	-	Lligge lanton	
	Q_{HWB}	~	~	-	Higgs-lepton	
7	$Q^{(1)}_{H\ell} \ Q^{(3)}_{H\ell}$	-	~	-		
	$Q_{H\ell}^{(3)}$	\checkmark^*	~	✓*	w k k k k k k k k k k k k k k k k k k k	$\mathbf{I} \qquad \mathbf{I} \qquad $
	Q_{He}^{He}	-	~	-	$s \rightarrow \ell^+$	$s \longrightarrow W l^+$
	$Q_{Hq}^{(1)}$	-	~	-	Higgs-quark	W
	$Q^{(1)}_{Hq} \ Q^{(3)}_{Hq}$	~	~	~		
	Q_{Hu}	-	~	-	W Z	u/c/t
	Q_{Hd}	-	-	-	s - u/c/t	$s - l^+$

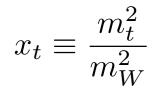
Operators for $U(3)^5$

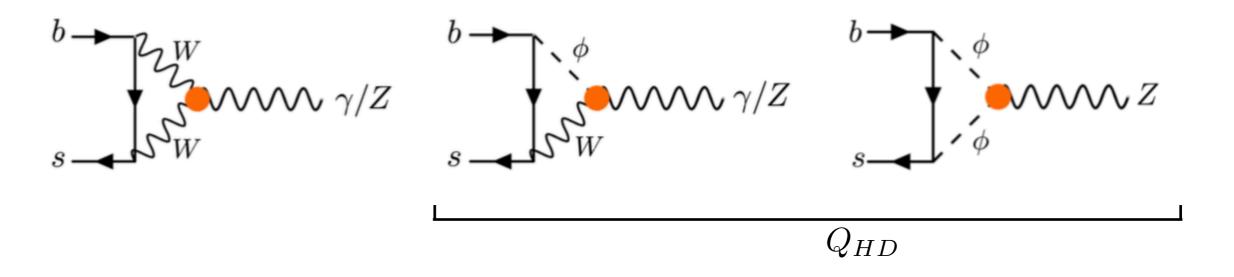

Group	Operators	$d_i \rightarrow d_j \gamma$	$d_i \rightarrow d_j l^+ l^-$	Meson mixing	4 quarks				
8: $(\bar{L}L)(\bar{L}L)$	$Q_{\ell\ell}$	✓*	✓*	✓*		h			
	$Q_{qq}^{(1)}$	-	~	~					
	$Q_{qq}^{(3)}$	-	~	~	$\downarrow \qquad \searrow \qquad) \qquad \qquad) \qquad \qquad$	WZ			
	$Q_{\ell q}^{(1)}$	-	~	-		s b			
	$Q_{\ell\ell} \ Q_{qq}^{(1)} \ Q_{qq}^{(3)} \ Q_{\ell q}^{(3)} \ Q_{\ell q}^{(1)} \ Q_{\ell q}^{(3)}$	-	~	-					
8: $(\bar{R}R)(\bar{R}R)$	Q_{ee}	-	-	-					
	Q_{uu}	-	-	-					
	Q_{dd}	-	-	-					
	Q_{eu}	-	~	-					
	Q_{ed}	-	-	-					
	$Q_{ud}^{(1)}$	-	-	-	9 guarka 9 lantana				
	$egin{array}{l} Q_{ed} \ Q_{ud}^{(1)} \ Q_{ud}^{(8)} \ Q_{ud}^{(8)} \end{array}$	-	-	-	2 quarks 2 leptons				
8: $(\bar{L}L)(\bar{R}R)$	$Q_{\ell e}$	-	-	-					
	$Q_{\ell u}$	-	~	-	$W \ge $				
	$Q_{\ell d}$	-	-	-					
	Q_{qe}	-	~	-	$s \longrightarrow l^+$				
	$Q_{qu}^{(1)}$	-	-	-					
	$Q_{qu}^{(8)}$	-	-	-					
	$Q_{qd}^{(1)}$	-	-	-					
	$Q_{qe} \ Q_{qu}^{(1)} \ Q_{qu}^{(1)} \ Q_{qu}^{(8)} \ Q_{qd}^{(1)} \ Q_{qd}^{(8)} \ Q_{qd}^{(8)}$	-	-	-	. * via inpu	t parameters			


Operators for $U(3)^5 + Y_u, Y_d$

Same as before +

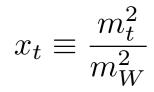
	(
Group	Operators	$d_i \rightarrow d_j \gamma$	$d_i \rightarrow d_j l^+ l^-$	Meson mixing	Higgs-quark and
5	$y_t Q_{uH}^{33}$	-	-	-	Gauge-quark
	$y_b Q_{dH}^{33}$	-	-	-	
6	$y_t Q_{uG}^{33}$	~	-	-	$b \rightarrow - V$
	$y_t Q_{uW}^{33}$	~	~	\checkmark	γW
	$y_t Q_{uB}^{33}$	~	~	-	$s \longrightarrow W$
	$y_b Q_{dG}^{33}$	-	-	-	
	$y_b Q_{dW}^{33}$	~	-	-	
	$y_b Q_{dB}^{33}$	-	-	-	$b \rightarrow \downarrow W \rightarrow l^-$
7	$y_b y_t V_{tb} Q_{Hud}$	~	-	-	\downarrow \downarrow ν
8: $(\bar{L}R)(\bar{R}L)$	$y_t y_b V_{tb} Q_{auad}^{(1)3333}$	~	-	-	s
	$y_t y_b V_{tb} Q_{quqd}^{(1)3333} \ y_t y_b V_{tb} Q_{quqd}^{(8)3333}$	~	-	-	$s - l^+$
4 quarks					
		$\mathcal{W}\gamma/Z$			+ neutrinos

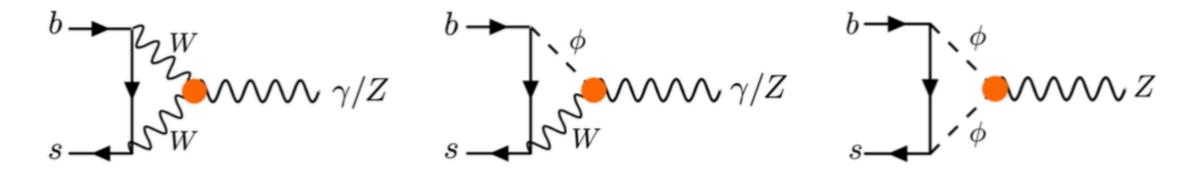

"EW" into C7



$$C_7 = \frac{3}{2}g_2 v^2 C_W \left(-\frac{x_t^2 + x_t}{2(x_t - 1)^2} + \frac{x_t^2}{(x_t - 1)^3} \log x_t \right)$$

"EW" into C7

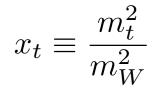


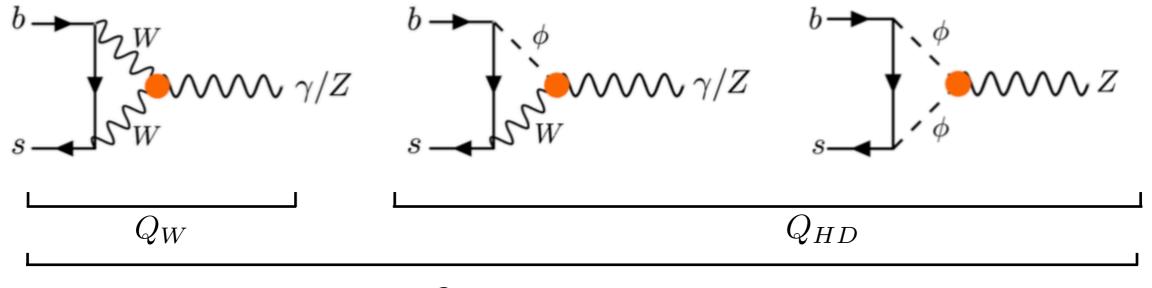

$$C_7 = \frac{1}{8} \frac{v^2}{s_{\theta}^2} C_{HD} (1 - s_{\theta}^2) D_0'(x_t)$$

Inami-Lim functions

$$D_0'(x_t) = \frac{8x_t^3 + 5x_t^2 - 7x_t}{12(x_t - 1)^3} + \frac{x_t^2(2 - 3x_t)}{2(1 - x_t)^4}\log x_t$$

"EW" into C7





 Q_{HWB}

$$C_7 = -v^2 C_{HWB} \frac{g_2}{g_1} \left(\frac{8x_t^2 - 7x_t + 5}{24(1 - x_t)^3} + \frac{x_t(x_t^2 - x_t + 1)}{4(1 - x_t)^4} \log x_t \right)$$

"EW" into C7

 Q_{HWB}

$$C_{7} = \frac{3}{2}g_{2}v^{2}C_{W}\left(-\frac{x_{t}^{2}+x_{t}}{2(x_{t}-1)^{2}} + \frac{x_{t}^{2}}{(x_{t}-1)^{3}}\log x_{t}\right)$$

$$C_{7} = -v^{2}C_{HWB}\frac{g_{2}}{g_{1}}\left(\frac{8x_{t}^{2}-7x_{t}+5}{24(1-x_{t})^{3}} + \frac{x_{t}(x_{t}^{2}-x_{t}+1)}{4(1-x_{t})^{4}}\log x_{t}\right)$$

$$C_{7} = \frac{1}{8}\frac{v^{2}}{s_{\theta}^{2}}C_{HD}(1-s_{\theta}^{2})D_{0}'(x_{t})$$

$$8x^{3}+5x^{2}-7x_{t}$$

Inami-Lim functions

$$D_0'(x_t) = \frac{8x_t^3 + 5x_t^2 - 7x_t}{12(x_t - 1)^3} + \frac{x_t^2(2 - 3x_t)}{2(1 - x_t)^4}\log x_t$$

Neutrinos

$$\mathcal{H} \supset -\frac{4G_F}{\sqrt{2}} \frac{1}{(4\pi)^2} \frac{e^2}{\sin^2 \theta_W} V_{ts}^* V_{tb} C_L \left(s_L \gamma^\mu b_L\right) \left(\nu_L \gamma^\mu \nu_L\right)$$

SM result

$$C_L = C_0(x_t) - 4B_0(x_t)$$

$$B_0(x_t) = \frac{1}{4} \left[\frac{x_t}{1 - x_t} + \frac{x_t}{(x_t - 1)^2} \log x_t \right],$$

$$C_0(x_t) = \frac{x_t}{8} \left[\frac{x_t - 6}{x_t - 1} + \frac{3x_t + 2}{(x_t - 1)^2} \log x_t \right],$$

SMEFT result

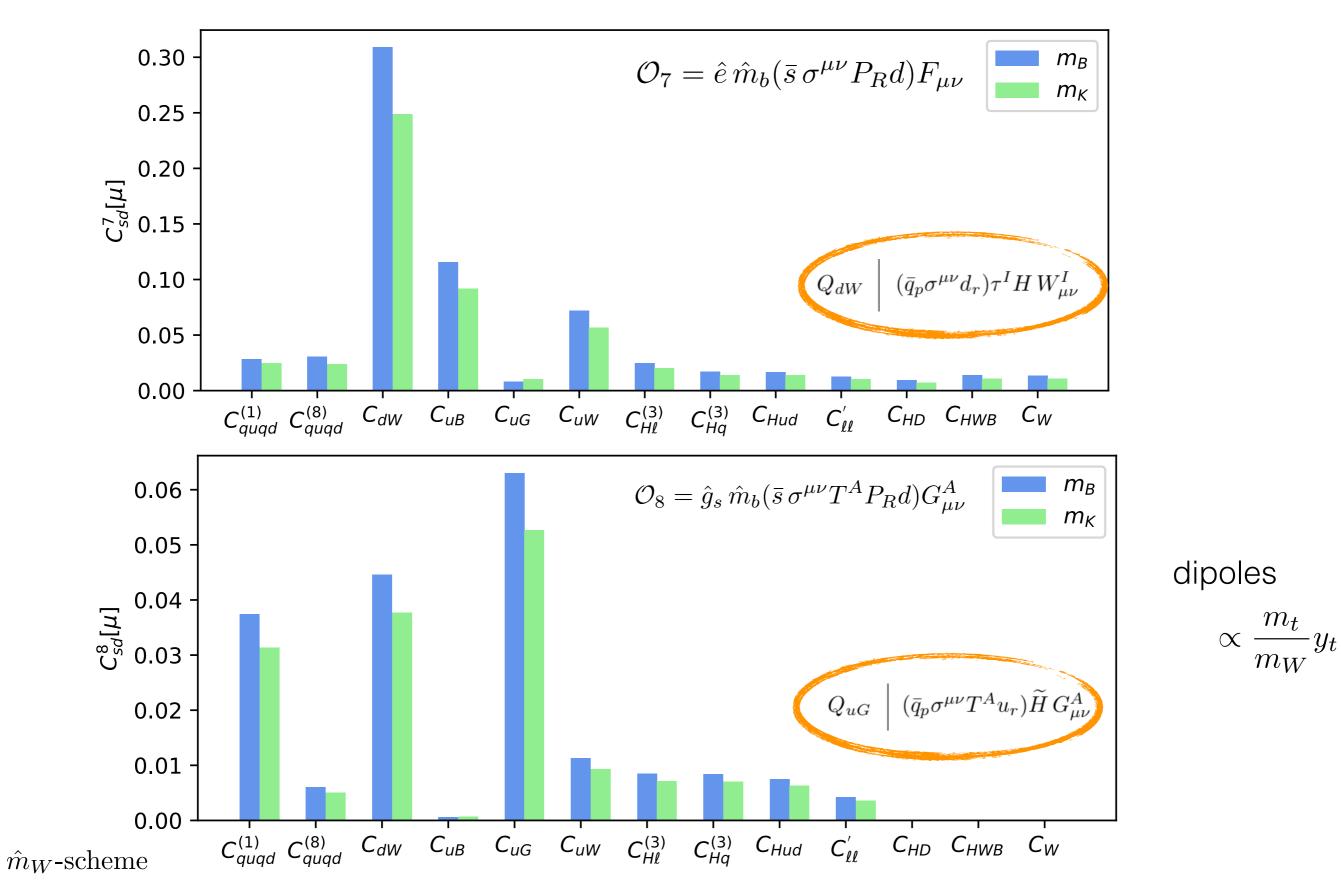
$$C_{L} = \frac{v^{2}}{\Lambda^{2}} \left(C_{Hl}^{(1)} + C_{Hq}^{(1)} - C_{Hu} + C_{lq}^{(1)} - C_{lu} + \frac{1}{2}C_{HD} \right) I(x_{t}) - \frac{v^{2}}{\Lambda^{2}}C_{lq}^{(3)}I^{lq}(x_{t}) + \frac{v^{2}}{\Lambda^{2}}C_{Hq}^{(3)}I_{\nu}^{Hq3}(x_{t}) + \frac{v^{2}}{\Lambda^{2}}C_{Hq}^{(3)}I_{\nu}^{Hq3}(x_{t}) + 2\frac{v^{2}}{\Lambda^{2}}C_{ll}'(C_{0}(x_{t}) - 4B_{0}(x_{t})) + \sqrt{2}y_{t}\frac{m_{t}}{m_{W}}\frac{v^{2}}{\Lambda^{2}}C_{uW}I_{\nu}^{uW} \\ \hat{m}_{W}\text{-scheme}$$

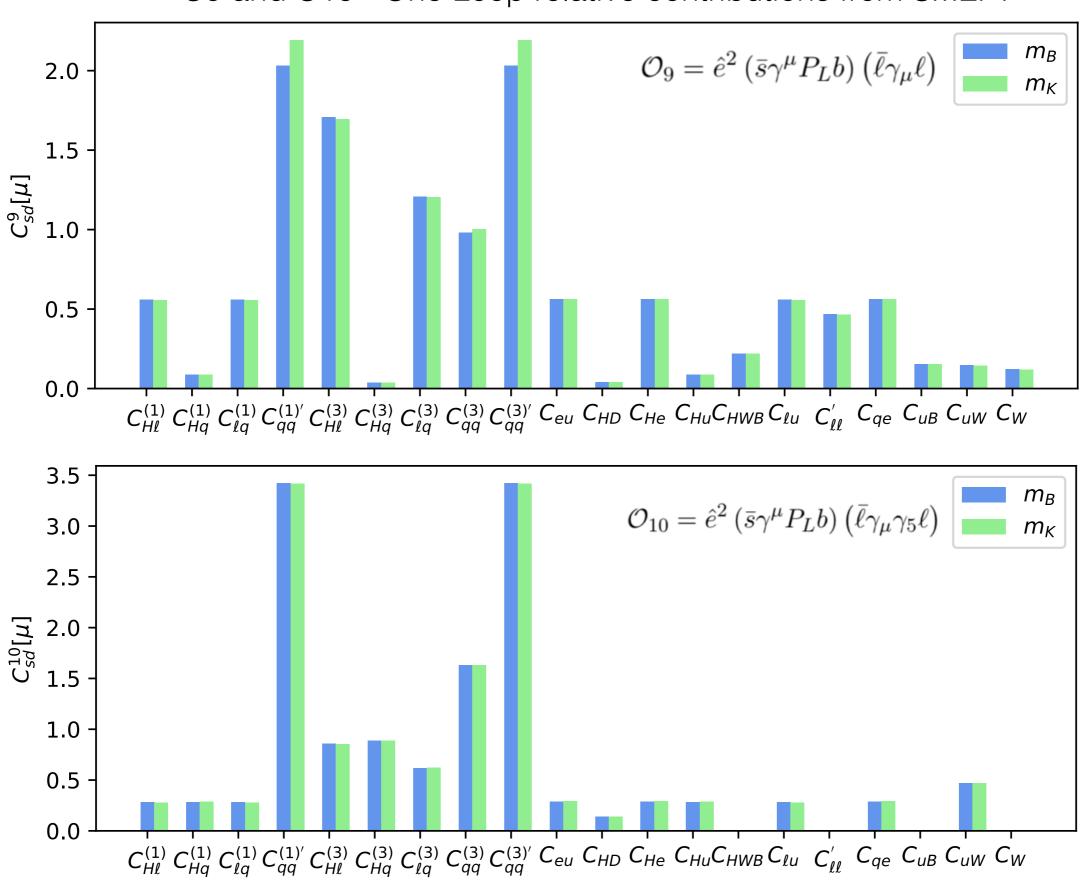
neutrino
$$B \to V \nu \bar{\nu}$$
observables $K_L \to \pi^0 \nu \bar{\nu}$ $K \to \pi \nu \bar{\nu}$

Results..

Our results are WET C's as a linear combination of SMEFT ops...

$$C_{7}(m_{B}) = - (3450.15 C_{quqd}^{(1)} - 3450.15 C_{quqd}^{(8)}) \log \frac{m_{W}}{\Lambda} - (225.32 C_{dW} + 105.363 C_{uB} + 11773.3 C_{uG} - 56.3316 C_{uW}) \log \frac{m_{W}}{\Lambda} + - (12260.6 C_{quqd}^{(1)} - 13291. C_{quqd}^{(8)}) - (30.53 C_{dW} - 33351.9 C_{uB} - 2299.87 C_{uG} + 5206.54 C_{uW}) + + 24839.6 C_{H\ell}^{(3)} - 16910.8 C_{Hq}^{(3)} - 16716.9 C_{Hud} - 12419.8 C_{\ell\ell}' + 9342.61 C_{HD} - 13866.9 C_{HWB} - 13702.5 C_{W}$$

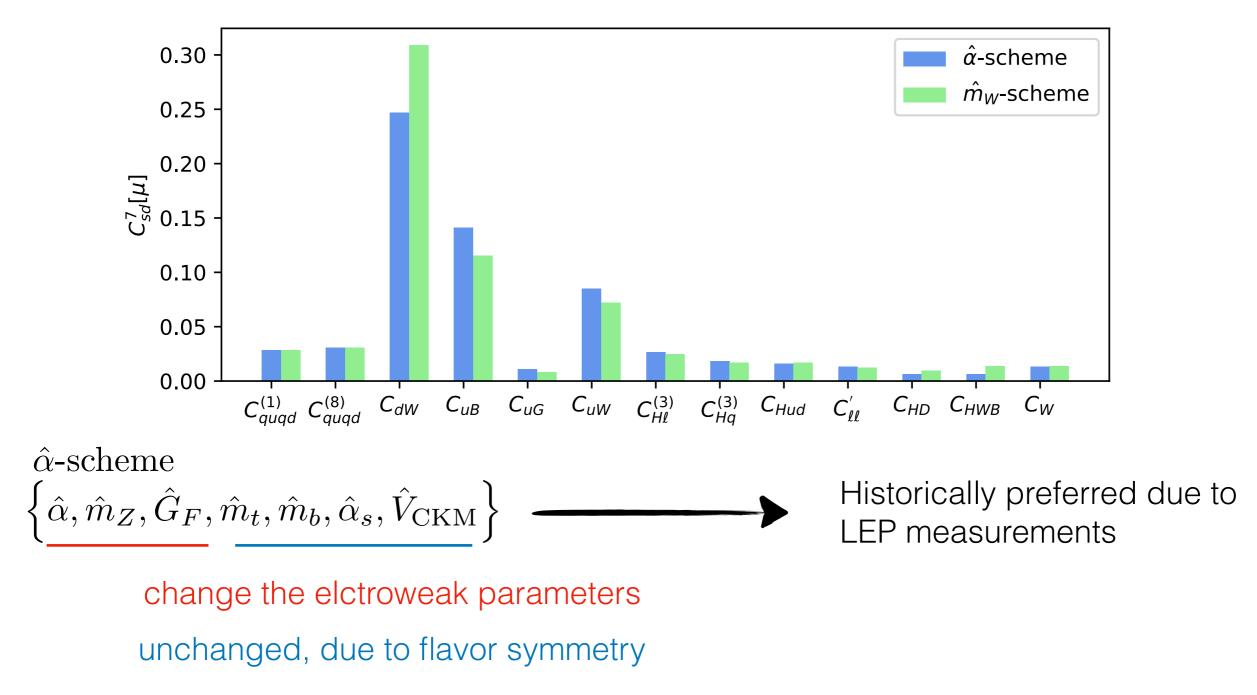

$$C_8(m_B) = - (21310.7 C_{quqd}^{(1)} - 3450.15 C_{quqd}^{(8)}) \log \frac{m_W}{\Lambda} - (618.4 C_{dW} + 297.91 C_{uB} + 32311.4 C_{uG} - 154.6 C_{uW}) \log \frac{m_W}{\Lambda} + - (16175.5 C_{quqd}^{(1)} - 2618.77 C_{quqd}^{(8)}) + (43060.7 C_{dW} - 167.796 C_{uB} - 18199.2 C_{uG} + 11644. C_{uW}) + + 8453.04 C_{H\ell}^{(3)} - 8413.15 C_{Hq}^{(3)} - 7492.09 C_{Hud} - 4226.52 C_{\ell\ell}' + 47.0 C_{HD} - 69.8 C_{HWB} - 68.9 C_W$$


 \hat{m}_W -scheme

hard to tell something from here...

Rafael Aoude - JGU Mainz

C7 and C8 - One Loop relative contributions from SMEFT



C9 and C10 - One Loop relative contributions from SMEFT

Rafael Aoude - JGU Mainz

 \hat{m}_W -scheme

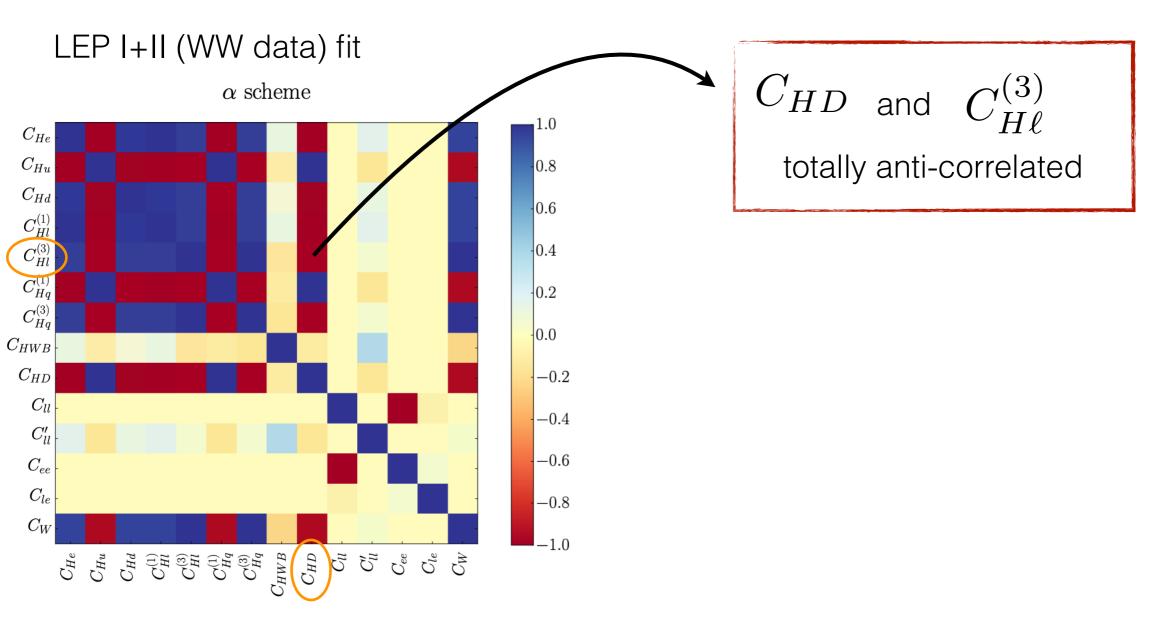
Only C7 in both schemes

 \hat{m}_W -scheme

$$\left\{\hat{m}_W, \hat{m}_Z, \hat{G}_F, \hat{m}_t, \hat{m}_b, \hat{\alpha}_s, \hat{V}_{\text{CKM}}\right\}$$

- Simpler one loop expressions
- Avoid shifts in the W pole mass

EW + flavor constraints

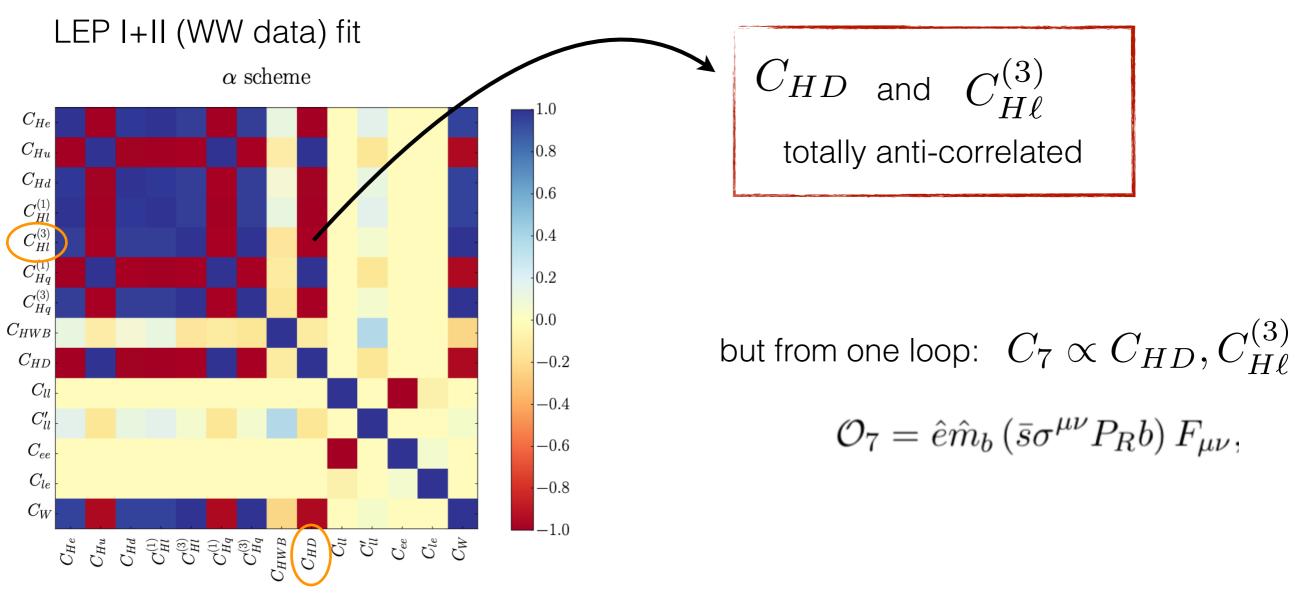

The question we want to answer here is

... what flavor tells us about the know EW constraints?

EW + flavor constraints

The question we want to answer here is

... what flavor tells us about the know EW constraints?

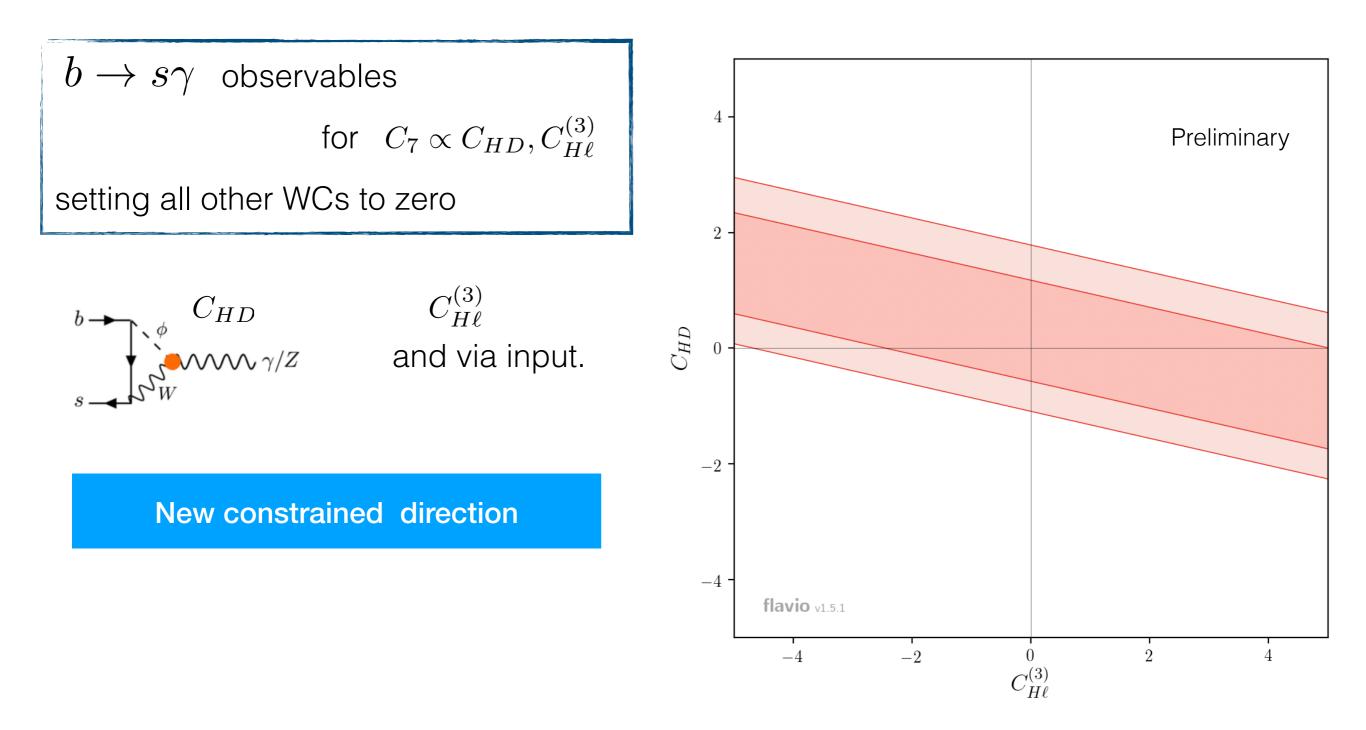


Brivio and Trott, 2018

EW + flavor constraints

The question we want to answer here is

... what flavor tells us about the know EW constraints?


Constraints on WET at low energy

.. set constraints on SMEFT WCs

Brivio and Trott, 2018

Flavour constraints

very naive example...

SMEFT

SMEFT

 m_W

 m_B

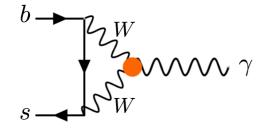
SMEFT

WET

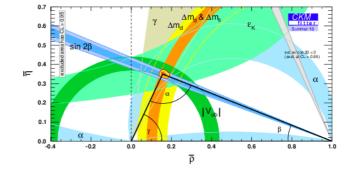
WET

 γ^{WET}

Conclusion + future..


 One loop matching between SMEFT and WET with Minimal Flavour Violation

• Flavour assumption is the "worst-case" scenario, which is a benchmark for other assumptions



• Work in progress: Putting together EW and Flavour constrains for all ops.

One loop matching

Thank you

Unterstützt von / Supported by

Stiftung/Foundation

JGU JOHANNES GUTENBERG **UNIVERSITÄT** MAINZ

Back Up

	$1: X^{3}$		$2: H^6$ $3: H^4$		$^{4}D^{2}$ 5		5 :	$5:\psi^2H^3+{\rm h.c.}$				
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_H ($(H^{\dagger}H)^3$ $Q_{H\Box}$ (1)		$(H^{\dagger}I$	$^{\dagger}H)\Box(H^{\dagger}H)$		${}^{\circ}H$	$(H^{\dagger}H)(\bar{l}_{p}e_{r})$	(P)		
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$			Q_{HD}	$(H^{\dagger}D_{\mu})$	$\left. H ight)^{*}\left(H^{\dagger}D_{\mu}H ight) = Q_{uH} \left \begin{array}{c} (H^{\dagger}H)(ar{q}_{\mu}) \\ (H^{\dagger}H)(ar{q}_{\mu}) \end{array} \right $		$(H^{\dagger}H)(\bar{q}_{p}u_{r})$	\widetilde{H})			
Q_W	$\epsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$,		Q_{a}	^{l}H	$(H^{\dagger}H)(\bar{q}_p d_r)$	H)		
$Q_{\widetilde{W}}$	$\epsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$											
	$4: X^2 H^2$	6	$\dot{\phi}:\psi^2 XH$	+ h.c.			$7:\psi^2$	H^2	D			
Q_{HG}	$H^{\dagger}H G^A_{\mu\nu} G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} \epsilon)$	$(r_r)\tau^I H W$	$V^{I}_{\mu\nu}$ -	$Q_{Hl}^{(1)}$	(H	$^{\dagger}i\overleftarrow{I}$	$\vec{D}_{\mu}H)(\bar{l}_p\gamma^{\mu}l_r)$	_		
$Q_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu \mu})$	$(e_r)HB_\mu$	ιν	$Q_{Hl}^{(3)}$	$(H^{\dagger}$	$i\overleftrightarrow{D}$	${}^{I}_{\mu}H)(\bar{l}_{p} au^{I}\gamma^{\mu}l_{r})$			
Q_{HW}		Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T)$	$(\Gamma^A u_r)\widetilde{H}$	$G^A_{\mu\nu}$	Q_{He}		$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$				
$Q_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{I}_{\mu u}W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} \imath$	$(\iota_r) \tau^I \widetilde{H} V$	$V^{I}_{\mu\nu}$	$Q_{Hq}^{(1)}$		$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$				
Q_{HB}		Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{H} B_p$		$\mu\nu$	$Q_{Hq}^{(3)}$		$(H^{\dagger}i\overleftrightarrow{D}{}^{I}_{\mu}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$)		
$Q_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T)$	$(\Gamma^A d_r) H$	$G^A_{\mu\nu}$	Q_{Hu}	(H)	$i\overleftarrow{D}$	$(\bar{u}_p \gamma^\mu u_r)$			
Q_{HWE}	$_{B} H^{\dagger} \tau^{I} H W^{I}_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} a)$	$(l_r)\tau^I H V$	$V^{I}_{\mu\nu}$	Q_{Hd}	(H)	$^{\dagger}i\overleftarrow{D}$	$\partial_{\mu}H)(\bar{d}_p\gamma^{\mu}d_r)$			
$Q_{H\widetilde{W}E}$	$_{B} \mid H^{\dagger} \tau^{I} H \widetilde{W}^{I}_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu \mu})$	$(d_r)HB$	$\mu\nu$	$Q_{Hud} + 1$	h.c. $i(\hat{I}$	$\check{H}^{\dagger}D$	$(\bar{u}_p \gamma^\mu d_r)$			
	$8:(ar{L}L)(ar{L}L)$		$8:(ar{R}R)(ar{R}R)$			$8:(\bar{L}L)(L)$		$(\bar{L}L)(\bar{R}R)$		8	$8:(\bar{L}R)(\bar{L}R)+{\rm h.c.}$	
$Q_{\ell\ell}$	$(\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_{p'})$	$\gamma_{\mu}e_{r})(\bar{e}_{s})$	$\gamma^{\mu}e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_p)$	$r)(\bar{e}$	$_{s}\gamma^{\mu}e_{t})$	$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \epsilon_{jk} (\bar{q}_s^k d_t)$	
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma)$	$\gamma_{\mu}u_r)(\bar{u}_s)$	$\gamma^{\mu}u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)$	$\cdot)(\bar{u}$	$_{s}\gamma^{\mu}u_{t})$	$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \epsilon_{jk} (\bar{q}_s^k T^A d_t)$	
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_{p'})$	$\gamma_{\mu}d_r)(\bar{d}_s)$	$\gamma^{\mu}d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_p)$	$d)(\bar{d})$	$_{\rm s}\gamma^{\mu}d_t)$	$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \epsilon_{jk} (\bar{q}_s^k u_t)$	
$Q_{\ell q}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma)$	$\gamma_{\mu}e_{r})(\bar{u}_{s})$	$\gamma^{\mu}u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q$	$_{r})(\bar{e}$	$(s_s \gamma^\mu e_t)$	$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \epsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$	
$Q_{\ell q}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_{p'})$	$\gamma_{\mu}e_r)(\bar{d}_s)$	$\gamma^{\mu}d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_p)$	$r)(\bar{u}$	$s_s \gamma^\mu u_t)$			
		$Q_{ud}^{(1)}$	$(\bar{u}_{p'})$	$\gamma_{\mu}u_r)(\bar{d}_s)$	$\gamma^{\mu}d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q)$	$r)(\bar{u}$	$_{s}\gamma^{\mu}T^{A}u_{t})$	0	$(\bar{I}D)(\bar{D}I)$ + b =	
			$Q_{ud}^{(8)} \mid (\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$		$Q_{qd}^{(1)} \qquad (\bar{q}_p \gamma$		$ar{q}_p \gamma_\mu q_r) (ar{d}_s \gamma^\mu d_t)$			$\frac{8:(\bar{L}R)(\bar{R}L) + \text{h.c.}}{(\bar{L}i_{\bar{L}})(\bar{L}i_{\bar{L}})}$		
						$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q$	$r)(\bar{a}$	$\bar{l}_s \gamma^\mu T^A d_t)$	Ų	$Q_{ledq} \mid (\bar{l}_p^j e_r) (\bar{d}_s q_{tj})$	

Details of the calculation

- Used Feynman Rules from Dedes
- MS-bar dim-reg
- Compared with the literature: (Grzadkowski & Misiak 0802.1413, Drobnak, Fajfer, Kamenik 1102.4347 & 1109.2357, Bobeth & Haisch 1503.04829, Aebischer et al 1512.02830)
- Anomalous matrices: ((Alonso), Jenkins, Manohar & Trott 1308.2627, 1310.4838, 1312.2014)

Inami Lim functions

$$B_0(x_t) = \frac{1}{4} \left[\frac{x_t}{1 - x_t} + \frac{x_t}{(x_t - 1)^2} \log x_t \right],$$

$$C_0(x_t) = \frac{x_t}{8} \left[\frac{x_t - 6}{x_t - 1} + \frac{3x_t + 2}{(x_t - 1)^2} \log x_t \right],$$

$$D_0(x_t) = -\frac{4}{9} \log x_t + \frac{-19x_t^3 + 25x_t^2}{36(x_t - 1)^3} + \frac{x_t^2(5x_t^2 - 2x_t - 6)}{18(x_t - 1)^4} \log x_t$$

$$D_0'(x_t) = \frac{8x_t^3 + 5x_t^2 - 7x_t}{12(x_t - 1)^3} + \frac{x_t^2(2 - 3x_t)}{2(1 - x_t)^4} \log x_t,$$

$$E_0'(x_t) = \frac{x_t(x_t^2 - 5x_t - 2)}{4(x_t - 1)^3} + \frac{3}{2} \frac{x_t^2}{(x_t - 1)^4} \log x_t,$$

$$S_0(x_t) = \frac{4x_t - 11x_t^2 + x_t^3}{4(1 - x_t)^2} - \frac{3x_t^3}{2(1 - x_t)^3} \log x_t,$$

$$S_0(x_c) = x_c,$$

$$S_0(x_t, x_c) = x_c \left(\log \frac{x_t}{x_c} - \frac{3x_t}{4(1 - x_t)} - \frac{3x_t^2}{4(1 - x_t)^2} \log x_t \right)$$

Neutrinos

$$\begin{split} I(x_t) &= \frac{x_t}{16} \left[-\log \frac{m_W^2}{\mu^2} + \frac{x_t - 7}{2(1 - x_t)} - \frac{x_t^2 - 2x_t + 4}{(1 - x_t)^2} \log x_t \right], \\ I^{lq}(x_t) &= \frac{x_t}{16} \left[-\log \frac{m_W^2}{\mu^2} + \frac{1 - 7x_t}{2(1 - x_t)} - \frac{x_t^2 - 2x_t + 4}{(1 - x_t)^2} \log x_t \right], \\ I^{Hl3}_{\nu}(x_t) &= \frac{x_t}{16} \left[-\log \frac{m_W^2}{\mu^2} + \frac{9(1 + x_t)}{2(1 - x_t)} - \frac{x_t^2 + 10x_t - 20}{(1 - x_t)^2} \log x_t \right] \\ I^{Hq3}_{\nu}(x_t) &= \frac{x_t}{16} \left[7\log \frac{m_W^2}{\mu^2} + \frac{x_t - 31}{2(1 - x_t)} + \frac{7x_t^2 - 2x_t - 20}{(1 - x_t)^2} \log x_t \right] \\ I^{uW}_{\nu}(x_t) &= \frac{3}{4} \left[\frac{2 - 3x_t + x_t^2}{(1 - x_t)^2} + \frac{x_t}{(1 - x_t)^2} \log x_t \right]. \end{split}$$

Rafael Aoude - JGU Mainz