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IGMF - Standard Constraints [Neronov and Semikoz, 2009]
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IGMF - Standard Constraints [Neronov and Semikoz, 2009]
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Resistive decay due to magnetic diffusion removes short correlation
lengths LB
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LB cannot be larger than the Hubble Radius



IGMF - Standard Constraints [Neronov and Semikoz, 2009]
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Zeeman Splitting
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IGMF cannot be stronger than galactic magnetic fields



IGMF - Standard Constraints [Neronov and Semikoz, 2009]
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Zeeman Splitting
Faraday Rotation
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Non-observation of intergalactic Faraday Rotation for radio
emisson from Quasars



IGMF - Standard Constraints [Neronov and Semikoz, 2009]
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Non-observation of large scale angular anisotropies of the CMB



IGMF – Lower Bound on B? [Neronov and Semikoz, 2009]
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EM cascades
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Lower bound on B from gamma ray observations?



Magnetic Helicity

I The magnetic helicity H is defined as H =
∫

V A ·B dV, where
A is the vector potential

I Next to B and LB it is an important quantity to characterize a
magnetic field as it describes its topology

I It is connected to the linkage numbers of magnetic field lines
(infinitisemal magnetic flux tubes)
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I Important since it is a conserved quantity and hence
influences the time evolution of IGMF [Saveliev et al., 2013b]
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Measurement of Primordial Magnetic Helicity
It has been shown that [Tashiro and Vachaspati, 2013]

G(E1,E2) =
〈

(Θ1 ×Θ2) · x
|x|

〉
∝ 1

2H(r12)r12

for a known blazar position; otherwise (with E3 > E2 > E1)

G(E1,E2,E3) =
〈

[(Θ1 −Θ3)× (Θ2 −Θ3)] · x3
|x3|

〉
∝ 1

2H(r12)r12

Blazar Observer
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Helicity Analysis – Sky Maps [Alves Batista et al., 2016]

Sky maps for maximally negative
and positive helicity (left) and no
helicity (top), B = 10−15 G,
LB ' 120Mpc.



Helicity Analysis – LB [Alves Batista et al., 2016]

Sky maps for positive helicity with LB = 50Mpc (left),
LB = 150Mpc (center) and LB = 250Mpc (right)

I The influence of helicity can be seen better with increasing
correlation length LB of the magnetic field.



Helicity Analysis – LB [Alves Batista et al., 2016]

Sky maps for positive helicity with LB = 50Mpc (left),
LB = 150Mpc (center) and LB = 250Mpc (right)
I The influence of helicity can be seen better with increasing

correlation length LB of the magnetic field.



Measurement of IGMF Helicity Using UHECR

Calculation of correlation between source positions
[Kahniashvili and Vachaspati, 2006]
I For example: Take N pairs (indexed with α) of sources with

each having the same separation vector ∆ = XB − XA

I P = 1
N
∑N

α=1 PA
αPB

α gives a measure of the corresponding
correlator

I Helical part may be isolated from the expression
Alternatively: Simulation of isotropically distributed UHECR
sources in a helical magnetic field
[Alves Batista and Saveliev, 2019]
I We are using a simple model with a single magnetic field mode
I As the energy loss also depends on the traveled distance,

conclusions about the IGMF structure may be made
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Measurement of IGMF Helicity Using UHECR

t
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Measurement of IGMF Helicity Using UHECR
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Conclusions and Outlook

I It has been shown that performing actual 3D simulations of
EM cascades also a statement considering the IGMF helicity
may be made

I Another possibility is to use UHECR, being, however, quite
challenging from the data analysis side

I In the future: Extention to more realistic scenarios and
combination of the methods by using secondaries of UHECR
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