Interface Flows in D1/D5 Holography

Christian Northe September 25 2019, DESY Hamburg

Julius-Maximilians-Universität Würzburg

Work in progress with J. Erdmenger and C. Melby-Thompson

Table of Contents

Kondo Effect as Interface RG Flow

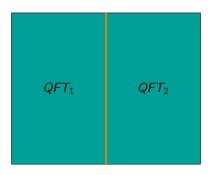
Interface RG Flows in Holography

Summary and Outlook

Kondo Effect as Interface RG

Flow

Interfaces



Interfaces provide mappings between possibly distinct physical systems.

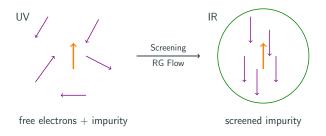
Study interfaces under renormalization group flows.

The Kondo Effect

Heavy magnetic impurity interacts with conduction electrons

Ultraviolet. Free electrons with mild antiferromagnetic coupling to spin

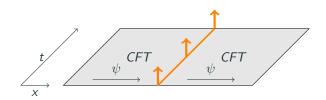
Infrared. Impurity is screened through binding with conduction electrons



$$H = \psi^{\dagger} i \nabla \psi + \lambda \, \delta(\vec{r}) \, \vec{S} \cdot \vec{J}, \qquad \vec{J} = \frac{1}{2} \psi^{\dagger} \, T \psi$$

Kondo Model as Interface CFT Affleck & Ludwig '91

Kondo Impurity → Interface between 2d CFTs



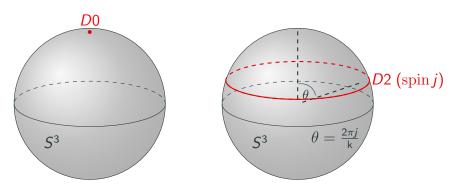
System described by action

$$\mathcal{I} = \mathcal{I}_{\mathrm{WZW}}(\hat{\mathfrak{su}}(2)_{k}) + \lambda \, \int_{\partial \Sigma} dt \, \vec{\boldsymbol{S}} \cdot \vec{\boldsymbol{J}}(t),$$

where \vec{S} is in spin-S irreducible representation of $\mathfrak{su}(2)$.

Conformally Invariant Boundary Conditions of $\mathfrak{su}(2)_k$

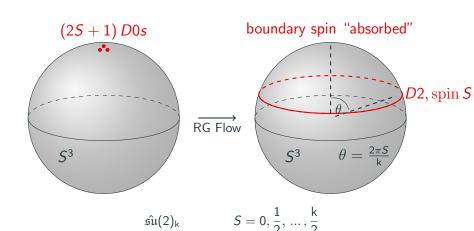
- Labeled by set of primaries $j = \underbrace{0, \frac{1}{2}, \dots, \frac{k}{2}}_{k+1}$
- Correspond to discrete set of conjugacy classes

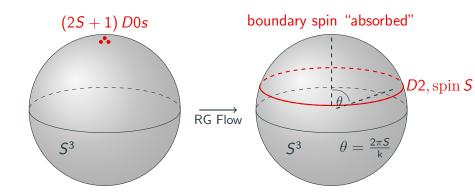


Both types of branes preserve SO(3)!

'Absorption of Boundary Spin' Principle Affleck & Ludwig 1991

Non-abelian polarization (2S+1) pointlike Branes (spin-0) o 1 brane of spin S





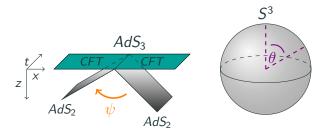
Geometric implementation in AdS/CFT: Kondo-like defect flows in D1/D5 system via non-abelian polarization.

Interface RG Flows in Holography

D1/D5 Holographic System

Embed D5-branes into Type IIB string theory and dissolve D1-branes inside.

Gravity. Weakly coupled IIB string theory on $AdS_3 \times S^3 \times M_4$.

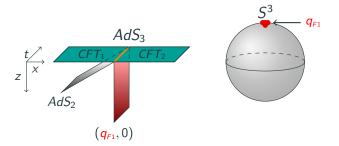


CFT. Two-dimensional, strongly coupled, lives on ∂AdS_3

- $\mathcal{N} = (4,4)$ small superconformal algebra.
- Bosonic part: $\mathfrak{so}(2,2) \times \mathfrak{so}(4)$.

Fundamental String Interfaces Bachas & Petropoulos '00

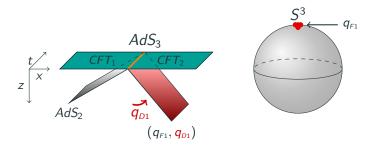
 q_{F1} units of fundamental string charge



- Interface preserves $\mathfrak{so}(2,1) \times \mathfrak{su}(2) \& 8$ superconformal charges
- \bullet CFT₁ \neq CFT₂, but their central charges coincide

(p,q) String Interfaces Bachas & Petropoulos '00

 $q_{F1}=$ fundamental string charge, $q_{D1}=$ D1-brane charge



- Interface preserves $\mathfrak{so}(2,1) \times \mathfrak{su}(2) \& 8$ superconformal charges
- \bullet CFT₁ \neq CFT₂, and their central charges differ

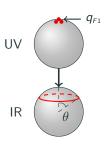
Flows from brane polarization

Alekseev, Recknagel, Schomerus '00

Deform branes by non-abelian polarization: Myers '99 Coordinates on S^3 become non-commutative \implies fuzzy S^2 inside S^3 .

- (q_{E1}, q_{D1}) strings puff up into D3 branes
- BPS flow solutions for general (q_{F1}, q_{D1}) obtained from κ symmetry projector (along lines of Gomis et al. '99).
- Flow preserves 4 supercharges
- Radial coordinate z in AdS₃ is energy scale

$$\Rightarrow \theta = \theta(z)$$



Flows from brane polarization

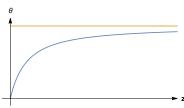
In D3-brane description, $\theta = \theta(z)$

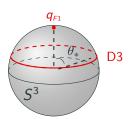
$$I = T_{\text{D3}} \int d^4 \xi e^{-\Phi} \sqrt{-\det(\hat{g}+F)} + T_{\text{D3}} \int (C^{(2)} \wedge F + \frac{1}{2} F \wedge F)$$

Evolution of $\theta(z)$ under RG flow determined by

$$z = z_0 \frac{\sin \theta}{\theta_* - \theta} \qquad \theta_* = \pi \frac{q_{F1}}{N_5}$$

where z is the radial coordinate in AdS₃.





Supergravity

 Probe brane description includes effect of interface on CFT, but not how CFT affects the interface

• Brane annihilation processes, correlators,...

Supergravity

 Probe brane description includes effect of interface on CFT, but not how CFT affects the interface

• Brane annihilation processes, correlators,...

Construct fully backreacted supergravity solutions with symmetries $SO(2,1) \times SO(3)$, $\frac{1}{2}$ -BPS (8 SUSYs)

Constructed asymptotically $AdS_3 \times S^3 \times M_4$ $\frac{1}{2}$ -BPS solutions for

- (p, q)-strings
- $D3_{(p,q)}$ -brane charged under F1- and D1-charge
- Connect these solutions via our RG flow

Computed interface entropies.

- They depend crucially on backreaction
- Confirmed *g*-theorem

Summary and Outlook

Summary

• Studied holographic duals of interface RG flows in the D1/D5 theory

• Probe brane limit: BPS RG flows for general (p, q) string defects

 Classical IIB Supergravity description representing backreaction for fixed points

• g-factor, including CFT contributions, in semi-classical limit of gravity

Outlook

ullet More detailed study from CFT point of view \leadsto deformation

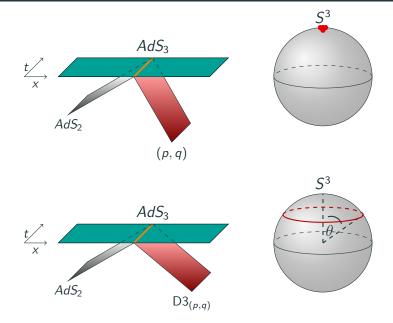
• Interfaces carrying D5/NS5 charges

• Generalizations to other top-down theories, especially

$$\mathsf{AdS}_3 \times \mathit{S}^3 \times \mathit{S}^3 \times \mathit{S}^1$$

Thank you for your attention!

Interface Solutions and RG Flow



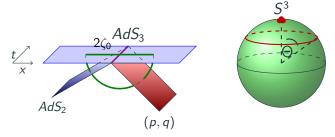
Interface Entropy

Interface Entropy from Holography Chiodaroli, Gutperle, Hung '10

ullet Boundary entropy $s = \log g \stackrel{\mathsf{fold}}{\longleftrightarrow}$ interface entropy.

BCFT:
$$g = \langle 0|\mathcal{B}\rangle\rangle$$

- Compute s as interface contribution to entanglement entropy
 Calabrese, Cardy '04



(p,q) g-Theorem

Simplest case: pure F1 interfaces (p, 0)

$$\log g = \frac{c}{6} \left(\log \kappa + 1 - \frac{1}{\kappa} \right)$$

$$(p,0): \qquad \kappa = \frac{T(4N_1, p) + T(0, p)}{T(4N_1, p) - T(0, p)}$$

$$D3_{(\rho,0)}: \qquad \kappa = \frac{T(4N_1, \, \rho \frac{\sin \theta}{\theta}) + T(0, \, \rho \frac{\sin \theta}{\theta})}{T(4N_1, \, \rho \frac{\sin \theta}{\theta}) - T(0, \, \rho \frac{\sin \theta}{\theta})}$$

- ullet g-theorem satisfied for all (p,q) interfaces
- g-factor contains contribution not visible in the probe brane limit

Interfaces in the D1/D5 CFT

Brief review of D1/D5 CFT

Type IIB on $M_{10} = \mathbb{R}^{1,1} \times \mathbb{R}^4 \times M_4$ (with $M_4 = \mathsf{K3}$ or T^4):

	0	1	2	3	4	5	6	7	8	9
D5 (N ₅)	•	•					•	•	•	•
D1 (N ₁)	•	•								

Gauge theory description. $\mathrm{U}(N_1) \times \mathrm{U}(N_5)$ gauge theory with bifundamental hypermultiplet. Consider Higgs branch. Gives:

Instanton description. D5 brane has a coupling $\int C^{(2)} \wedge \operatorname{Tr}(F \wedge F)$. \Longrightarrow D1 branes can be dissolved as $\operatorname{U}(N_5)$ gauge instantons on M_4 .

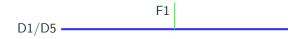
Low energy dynamics. 2d $\mathcal{N}=(4,4)$ SCFT: Non-linear sigma model on the moduli space of instantons on M_4 . Strominger & Vafa '96

Interfaces in D1/D5 CFT

Type IIB on $M_{10}=\mathbb{R}^{1,1}\times\mathbb{R}^4\times M_4$:

	0	1	2	3	4	5	6	7	8	9
D5 (N ₅)	•	•					•	•	•	•
D1 (N ₁)	•	•								
F1 (p)	•		•							

- preserves $\mathcal{N}=4$, d=1 supersymmetry
- realized in gauge theory as Wilson line. Sources jump in background electric field, changing the CFT on one side while preserving the central charge. This case is an interface, not a defect.



Wilson line interfaces in D1/D5 CFT

- Wilson line \leftrightarrow long string connecting distant D3 brane to D1/D5 system.
- After mixing, lowest-lying fermions have Lagrangian Tong & Wong '14

$$L_{\eta} = \eta^{\dagger} (i\partial_0 + \Omega_A \partial_t Z^A) \eta$$

where η is in the fundamental of $\mathrm{U}(N_5)$, Z^A is the coordinate on \mathcal{M} , and Ω_A is a $\mathrm{U}(N_5)$ connection on $M_4 \times \mathcal{M}$.

• This can be rewritten as the insertion of

$$W = \operatorname{Tr}_{F} \mathcal{P} \exp \left(i \int dt \, \partial_{t} Z^{A} \Omega_{A}(y_{0}, Z) \right)$$

with y_0 the location of the Wilson line in M_4 .