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D3 branes probing F-theory sevenbranes

A D3 brane probing a sevenbrane is described by a 4d N = 2 SCFT HG (plus a
c.o.m. hyper). The flavor symmetry G is determined by the Kodaira type of the
F-theory elliptic fiber. The Higgs branch Higgs(HG ) coincides with the moduli

space of one G -instanton, M̃G ,1.
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4d chiral algebra

4d N = 2 SCFTs possess a chiral algebra which was discovered by
[Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees]

For the D3 brane theories HG ,

A4d
G = Kac-Moody algebra Gk4d at level k4d = −h∨G
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The vacuum module encodes the spectrum of Schur operators of HG . Its character
is a solution to a 2nd order modular linear differential equation (MLDE).

The second solution to the MLDE corresponds to a different module of the chiral
algebra [Arakawa-Kawasetsu], which is conjectured to correspond to a surface
operator SG of HG [Beem-Rastelli]. Connection between surface operators and
the chiral algebra has also been investigated by [Cordova-Gaiotto-Shao].
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Twisting

We would like to compactify HG on a two-sphere S2, which requires performing a
topological twist.

Spacetime rotations: SO(4) ⊃ SO(2)× SO(2)J .

R-symmetry group: SU(2)R × U(1)r .

Choice of topological twist is labeled by an integer N [Cecotti-Song-Vafa-Yan]:

J → J(N) = J + R +
1

2
N(R − r).

Twisted compactification results in a 2d theory, which flows in the IR to a NLSM
T N
2d [HG ]. Consistency requires that all fields take values in well-defined bundles

over S2, which for a given N restricts the allowed choice of G .

4



2d chiral algebra

The NLSMs T N
2d [HG ] possess N = (0, 2) supersymmetry; we will denote their

chiral algebra by AN
G .

This class of NLSMs has noncompact target spaces; to cure this, one can turn on
chemical potentials ~µ for the global symmetries of T N

2d [HG ], which lifts
degeneracies in the spectrum.

Then the elliptic genus can still be expected to decompose as a sum of characters
of the modules M of the chiral algebra:

E(~µ, τ) =
∑
M

nMχM(~µ, τ).
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N = −1 twist and minuscule varieties/1

We will pick the N = −1 twist, J(−1) = J + 1
2 (R + r). We focus on G = SO(8),

E6,E7, for which the twist is allowed; one obtains a 2d NLSM with the same chiral
algebra as in 4d:

A(−1)
G = Gk4d , k4d = −h∨G

6
− 1.

Modular invariance of the elliptic genus more or less determines it for us:

E(~µ, τ) = −χ̂G
0 (~µ, τ) + χ̂G

ωR
(~µ, τ),

The vacuum character χ̂G
0 (~µ, τ) arises from 4d Schur operators. The non-vacuum

character on the other hand corresponds to a Wallach representation of G , and
can be computed explicitly in terms of Kazhdan-Lusztig polynomials.

G D4 E6 E7

k −2 −3 −4
ωR −2ω1 −3ω6 −4ω7
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N = −1 twist and minuscule varieties/2

The non-vacuum character χ̂ωR
(~µ, τ) contains the ground states of the elliptic

genus; these count to holomorphic functions on the target space of the NLSM.

This allows us to identify the target space of the NLSM as the minuscule variety
X̂G , which is a cone over a complex manifold XG :

G D4 E6 E7

XG Gr(2, 4) OG (5, 10) OP2

dimC(XG ) 4 10 16

The minuscule variety X̂G is a Lagrangian submanifold of M̃G ,1 = Higgs(HG ).
This is consistent with the expectation that the non-vacuum character is
associated to a surface defect of HG .

Moreover, the chiral algebra of the NLSM can be identified with a curved βγ
system on X̂G [Costello, Gorbunov-Gwilliam-Williams].
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N = −1 twist and minuscule varieties/3

Naively, the NLSM only sees a maximal subalgebra G [ of G , corresponding to the
isometries of the target space:

G D4 E6 E7

XG Gr(2, 4) OG (5, 10) OP2

G [ SU(4)× U(1) SO(10)× U(1) E6 × U(1)

This is ultimately due to the stress tensor of the NLSM being

T = TG
Sugawara + ∂J ,

where J is the U(1) current.

With respect to this stress tensor, only the currents for G [ have conformal
dimension 1. The remaining currents acquire dimension 0 or 2.

Nevertheless, the chiral algebra is the larger G−k4d , which plays the role of a
hidden symmetry of the theory. In particular, the spectrum organizes in

representations of A(−1)
G . For XG = Gr(2, 4), enhancement to G = SO(8) was

already noticed in [Dedushenko-Gukov].
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Pure spinor superstring and hidden E6 symmetry

Surprisingly, the case G = E6 is intimately related to Berkovits’ pure spinor
formulation of the superstring! Indeed,

XE6 = OG (5, 10) = {10d spinors λ |λγµλ = 0},

At the level of global symmetries, we find

G [ = SO(10)× U(1) = (spacetime rotations)×(ghost symmetry)→ E6.

Moreover, it is known that the curved βγ system on the minuscule variety X̂E6

(i.e. the chiral algebra A(−1)
E6

) captures the ghost degrees of freedom of the pure
spinor superstring [Nekrasov, Aisaka-Arroyo-Berkovits-Nekrasov].
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Pure spinor partition function

We can check the existence of a hidden E6 symmetry at the level of partition
function. Zp.s. = Tr(−1)FqL0 . . . was computed in [Aisaka-Arroyo-
Berkovits-Nekrasov] up to O(q6). We find:

Zp.s. = E(~µ, τ) = −χ̂G
0 (~µ, τ) + χ̂G

−3ω6
(~µ, τ)!

Here χ̂G
−3ω6

(~µ, τ) captures the states built purely out of the pure spinor variable λ,

while χ̂G
0 (~µ, τ) encodes the states that also involve the so-called b ghost

composite operator.

We were also able to find an all-order expression for Zp.s. in terms of E6 theta
functions:

Z10d pure spinors =
ΘE6
ω6

( ~m, τ)−ΘE6
ω1

( ~m, τ)∏16
i=1 θ1(mi , τ)/η(τ)

,

for a suitable choice of parameters ~m and mi .

A remark: the existence of a hidden E6 symmetry acting on 10d SYM (i.e. on the
ground states of the pure spinor system) was first conjectured by Pioline and
Waldran. Our results extends their observation to the massive states as well.
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