Associated Production of W + charm in pp-Collisions with CMS and Determination of the Strange Quark Content of the Proton

Svenja Pflitsch, Katerina Lipka

DESY

25.03.2019

Outline

W + charm at 7 TeV

W + charm at 13 TeV

Determination of the Strange Quark Content of the Proton

Strangeness in PDFs

- Strangeness is the least constrained light quark PDF
- Mostly constrained by *v*-scattering experiments
 - $\rightarrow\,$ Need to take nuclear corrections into account
 - $\rightarrow\,$ Additional uncertainty in the PDF

Why do we need to improve strangeness?

- Limitations on theoretical calculations
 - \rightarrow Standard Model parameters (W boson mass)
 - \rightarrow BSM Searches (SUSY)

Combined categories	Value [MeV]	Stat. Unc.	Muon Unc.	Elec. Unc.	Recoil Unc.	Bckg. Unc.	QCD Unc.	EW Unc.	PDF Unc.	Total Unc.	χ^2/dof of Comb.
$m_{\rm T}, W^+, e^{-\mu}$	80370.0	12.3	8.3	6.7	14.5	9.7	9.4	3.4	16.9	30.9	2/6
$m_{\rm T}, W^-, e^{-\mu}$	80381.1	13.9	8.8	6.6	11.8	10.2	9.7	3.4	16.2	30.5	7/6
$m_{\rm T}, W^{\pm}, e$ - μ	80375.7	9.6	7.8	5.5	13.0	8.3	9.6	3.4	10.2	25.1	11/13
$p_{\rm T}^{\ell}, W^+, e^{-\mu}$	80352.0	9.6	6.5	8.4	2.5	5.2	8.3	5.7	14.5	23.5	5/6
$p_{\rm T}^{\ell}, W^-, e^{-\mu}$	80383.4	10.8	7.0	8.1	2.5	6.1	8.1	5.7	13.5	23.6	10/6
$p_{\mathrm{T}}^{\ell}, W^{\pm}, e$ - μ	80369.4	7.2	6.3	6.7	2.5	4.6	8.3	5.7	9.0	18.7	19/13
$p_{\rm T}^{\ell}, W^{\pm}, e$	80347.2	9.9	0.0	14.8	2.6	5.7	8.2	5.3	8.9	23.1	4/5
$m_{\rm T}, W^{\pm}, e$	80364.6	13.5	0.0	14.4	13.2	12.8	9.5	3.4	10.2	30.8	8/5
$m_{\rm T}$ - $p_{\rm T}^{\ell}$, W^+ , e	80345.4	11.7	0.0	16.0	3.8	7.4	8.3	5.0	13.7	27.4	1/5
$m_{\rm T}$ - $p_{\rm T}^{\ell}$, W^- , e	80359.4	12.9	0.0	15.1	3.9	8.5	8.4	4.9	13.4	27.6	8/5
m_{T} - p_{T}^{ℓ} , W^{\pm} , e	80349.8	9.0	0.0	14.7	3.3	6.1	8.3	5.1	9.0	22.9	12/11
$p_{\mathrm{T}}^{\ell}, W^{\pm}, \mu$	80382.3	10.1	10.7	0.0	2.5	3.9	8.4	6.0	10.7	21.4	7/7
$m_{\rm T}, W^{\pm}, \mu$	80381.5	13.0	11.6	0.0	13.0	6.0	9.6	3.4	11.2	27.2	3/7
$m_{\rm T}$ - $p_{\rm T}^{\ell}$, W^+ , μ	80364.1	11.4	12.4	0.0	4.0	4.7	8.8	5.4	17.6	27.2	5/7
$m_{\rm T}$ - $p_{\rm T}^{\ell}$, W^- , μ	80398.6	12.0	13.0	0.0	4.1	5.7	8.4	5.3	16.8	27.4	3/7
m_{T} - p_{T}^{ℓ} , W^{\pm} , μ	80382.0	8.6	10.7	0.0	3.7	4.3	8.6	5.4	10.9	21.0	10/15
$m_{\rm T}$ - $p_{\rm T}^{\ell}$, W^+ , e - μ	80352.7	8.9	6.6	8.2	3.1	5.5	8.4	5.4	14.6	23.4	7/13
$m_{\rm T}$ - $p_{\rm T}^{\ell}$, W^- , e - μ	80383.6	9.7	7.2	7.8	3.3	6.6	8.3	5.3	13.6	23.4	15/13
$m_{\rm T}\text{-}p_{\rm T}^\ell,W^\pm,e\text{-}\mu$	80369.5	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5	29/27

[Eur. Phys. J. C (2018) 78]

Strangeness at the LHC: W + charm

- Produced by hard scattering of a strange quark and a gluon at LO
- NLO contributions dominated by radiative corrections to LO processes
- Contributions from d quarks are Cabibbo suppressed
- Probes strangeness at $10^{-3} \le x \le 10^{-1}$

Fist measurement of W+charm at the LHC (5 fb⁻¹) CMS 7 TeV [JHEP 02 (2014) 013]

•
$$W \to l + \nu$$
 $(l = \mu, e)$

- Single, isolated high- p_T lepton
- + Missing transverse energy
- Selecting charmed-jet signatures, $p_{\rm T}^{jet} > 25\,{\rm GeV}$:
 - $c \to D^*(2010)^{\pm}$
 - $c \to D^{\pm}$
 - $c \rightarrow \mu$ Dominant systematic: $Br(c \rightarrow \mu)$

Comparison with Theoretical Predictions

- Calculations done with MCFM at NLO
- Scale: $\mu_r = \mu_f = M_W$
- $\frac{1}{2}\mu < \mu_r = \mu_f < 2\mu$

QCD Analysis: Parametrization at the Starting Scale Phys. Rev. D 90, 032004

$$\begin{aligned} xu_{v}(x) &= A_{u_{v}} \ x^{B_{u_{v}}} \ (1-x)^{C_{u_{v}}} \ (1+E_{u_{v}}x^{2}), \\ xd_{v}(x) &= A_{d_{v}} \ x^{B_{d_{v}}} \ (1-x)^{C_{d_{v}}}, \\ x\overline{U}(x) &= A_{\overline{U}} \ x^{B_{\overline{U}}} \ (1-x)^{C_{\overline{U}}}, \\ x\overline{d}(x) &= A_{\overline{d}} \ x^{B_{\overline{d}}} \ (1-x)^{C_{\overline{d}}}, \\ x\overline{s}(x) &= A_{\overline{s}} \ x^{B_{\overline{s}}} \ (1-x)^{C_{\overline{s}}}, \\ xg(x) &= A_{g} \ x^{B_{g}} \ (1-x)^{C_{g}} + A'_{g} \ x^{B'_{g}} \ (1-x)^{C'_{g}}. \end{aligned}$$

15 Parameter Free-s fit:

 $\begin{array}{ll} f_s = \bar{s}/(\bar{d}+\bar{s}) & \text{released} \\ B_{\overline{u}} = B_{\overline{d}} = B_{\overline{s}} \\ xs = x\bar{s} \end{array}$

$$A_{\overline{u}} = A_{\overline{d}}(1 - f_s)$$

 $B_{\overline{d}} \neq B_{\overline{s}}$ (Parametrization uncertainty)

Results

- Strangeness suppression factor: $r_s = (s + \bar{s})/(\bar{u} + \bar{d})$
- Large parametrization uncertainty from $B_{\overline{d}} \neq B_{\overline{s}}$

W + charm Analysis at 13 TeV (35.7 fb⁻¹) [arXiv:1811.10021]

- $W \to \mu + \nu$
 - Single, isolated high- p_T muon
 - + Missing transverse energy

•
$$c \xrightarrow{0.24} D^{*\pm} \xrightarrow{0.68} D^0 + \pi^{\pm}_{slow}$$

 $D^0 \xrightarrow{0.04} K^{\mp} + \pi^{\pm}$

- No jet required
 - \rightarrow low- $p_T D^*$ accessible
- Low tracking uncertainty
- Small branching ratios

Event Selection

 $W \to \mu \nu$

 $M_{\rm T} = \sqrt{2 \cdot p_{\rm T}^{\mu} \cdot p_{\rm T}^{miss} \cdot (1 - \cos(\phi_{\mu} - \phi_{\vec{p}_{\rm T}^{\rm miss}}))} > 50 \,\mathrm{GeV}$

- $D^0 \to K^{\pm} + \pi^{\mp}$
 - $p_{\mathrm{T}}^{\mathrm{K},\pi}$ > 1 GeV
 - Fitted secondary vertex
 - $|D_{rec}^0 D_{pdg}^0| < 35 \,\mathrm{MeV}$

- $D^*(2010)^{\pm} \to D^0 + \pi^{\pm}_{slow}$
 - $p_{\mathrm{T}}^{\pi_{\mathrm{slow}}}$ > 0.35 GeV
 - $\pi_{
 m slow}$ in a cone around D^0 $\Delta R(D^0,\pi_{
 m slow})~<$ 0.15
 - Transverse momentum fraction $p_{\mathrm{T}}^{D^*}/\sum p_{\mathrm{T}}$ > 0.2

Extracting W+charm

- Large background from gluon splitting
- Opposite Sign (OS): $W^{\pm} + D^{*\mp}$
- Same Sign (SS): $W^{\pm} + D^{*\pm}$

OS - SS

SS

Strangeness Determination in CMS

25.03.19 12/23

 19531 ± 676

19348 + 290

95 + 249

47 + 26

Systematic Uncertainties

Total	+7.5/-7.0	
MC-Statistics	+3.6/-3.3%	21
Fragmentation	+3.9/-3.3%	 Sec. Vtx Fit Signal Extraction PDF
Lumi	\pm 2.5%	 Pile-Up D*(2010)[±] Kinematics
Branching Ratios $(c \rightarrow K, \pi, \pi_{slow})$	\pm 2.4%	 Other Sources: ± 3.4% Muons E^{miss}_T
Tracking Efficiency	\pm 2.3%	

Comparison with Theoretical Predictions

- Calculations done with MCFM
- Scale: $\mu_r = \mu_f = M_W$
- $\frac{1}{2}\mu < \mu_r = \mu_f < 2\mu$ uncertainty of pprox 3%

• $p_{\rm T}^{\mu} > 26 \,{\rm GeV}$ • $|\eta^{\mu}| < 2.4$ • $p_{\rm T}^{c} > 5 \,{\rm GeV}$

QCD Analysis: Setup

xFitter

- xFitter 2.0.0 (www.xfitter.org)
- Fit performed at NLO
- Starting scale: $Q_0^2 = 1.9 \,\text{GeV}^2$
- Parton evolution in $Q^2 > Q_0^2$ \rightarrow DGLAP equations

Minimisation: adjust initial parameters and fit again

Data Input

- HEBA I+II combined inclusive DIS data [Eur.Phys.J. C75 (2015) 12]
 - Charged Current
 - Neutral Current
- \rightarrow Quarks and gluons at small and medium x

- CMS lepton charge asymmetry
 - 7 TeV [Phys. Rev. D 90, 032004]
 - 8 TeV [Eur.Phys.J. C76 (2016) 469]

at s = 8 TeV

2

Muon m

 \rightarrow further improve u and d valence guarks

Data Input: CMS W+charm

- 7 TeV [JHEP 02 (2014) 013]
- 13 TeV [arXiv:1811.10021]
- systematic errors as nuisance parameters (100% bin-to-bin correlation)

Model Input

Heavy quark treatment:

Thorne-Roberts general mass variable flavour number scheme at NLO $m_c = 1.5 \,\text{GeV}$ $1.37 < m_c < 1.55 \,\text{GeV}$ $m_b = 4.5 \,\text{GeV}$ $4.3 < m_b < 5.0 \,\text{GeV}$

Strong coupling constant:

 $\alpha_s = 0.118$

Scales:

 $\begin{array}{l} Q_0^2 = 1.9\,{\rm GeV^2} \\ Q_{min}^2 = 3.5\,{\rm GeV^2} \quad {\rm for \; HERA\; data} \\ \mu_r^2 = \mu_f^2 = m_W^2 \quad {\rm for \; W\text{-}processes} \end{array}$

$$\begin{array}{ll} {\rm 1.6} < \ Q_0^2 & < {\rm 2.2 \, GeV^2} \\ {\rm 2.5} < Q_{min}^2 < {\rm 5.0 \, GeV^2} \\ \mu_r^2 = \mu_f^2 = Q^2 & {\rm for \, DIS\text{-}processes} \end{array}$$

Parametrization at the starting scale

15 Parameter Fit

$$\begin{aligned} xu_{v}(x) &= A_{u_{v}} \ x^{B_{u_{v}}} \ (1-x)^{C_{u_{v}}} \ (1+E_{u_{v}}x^{2}) \\ xd_{v}(x) &= A_{d_{v}} \ x^{B_{d_{v}}} \ (1-x)^{C_{d_{v}}}, \\ x\overline{u}(x) &= A_{\overline{u}} \ x^{B_{\overline{u}}} \ (1-x)^{C_{\overline{u}}} \ (1+E_{\overline{u}}x^{2}) \\ x\overline{d}(x) &= A_{\overline{d}} \ x^{B_{\overline{d}}} \ (1-x)^{C_{\overline{d}}} \\ x\overline{s}(x) &= A_{\overline{s}} \ x^{B_{\overline{s}}} \ (1-x)^{C_{\overline{s}}} \\ xg(x) &= A_{g} \ x^{B_{g}} \ (1-x)^{C_{g}} \ (1+D_{g}x) \end{aligned}$$

Constraints:

$$B_{\overline{u}} \neq B_{\overline{d}} \neq B_{\overline{s}}$$
 [Phys.Lett. B777 (2018)] $xs = x\overline{s}$

Estimation of PDF Uncertainties

- Hessian Error Treatment: $\Delta \chi^2 = 1$
- MC replicas: Random sampling of datapoints, varied within uncertainties
 - Uncertainties from RMS around mean value

QCD Analysis: Results

Dataset	χ^2/n_{dp}
HERA1+2 CCep	43 / 39
HERA1+2 CCem	57 / 42
HERA1+2 NCem	218 / 159
HERA1+2 NCep 820	69 / 70
HERA1+2 NCep 920	448 / 377
HERA1+2 NCep 460	216 / 204
HERA1+2 NCep 575	220 / 254
CMS W muon charge asym. 7 TeV	13 / 11
CMS W muon charge asym. 8 TeV	4.2 / 11
W+c 7 TeV	2.2/5
W+c 13 TeV	2.1 / 5
Correlated χ^2	87
Total χ^2 / dof	1385 / 1160

Comparison with other PDFs

- Results for r_s compatible with global PDFs
- No observation of enhanced strangeness

Summary

- W + charm at 7 and 13 TeV
 - Inclusive and differential cross sections as a function of $|\eta^{\mu}|$
 - Good agreement between measurement and MCFM predictions
- QCD analysis
 - Determination of xs and r_s
 - 7 TeV: 15 parameter free-s fit using xfitter
 - 13 TeV: Release of B parameter constraints possible

Backup

Comparison with 7 TeV results

- In agreement with 7 TeV PDF fits (same parametrization)
- Reduced PDF uncertainties

