High-precision predictions and constraints from vacuum stability

Bernd Kniehl

II. Institut für Theoretische Physik, Universität Hamburg

Quantum Universe kick-off meeting — H1 session 20 March 2019

- Vacuum stability
- 2 High-precision Higgs observables

Vaccum stability condition

Determine μ^{cri} and M_H^{cri} for given M_t (or M_t^{cri} for given M_H) so that

$$\lambda(\mu^{\rm cri}) = \beta_{\lambda}(\lambda(\mu^{\rm cri})) = 0$$

 \rightsquigarrow Vacuum is stable for $M_H \ge M_H^{\rm cri}$ (or $M_t \le M_t^{\rm cri}$).

Caveat: μ^{cri} , M_H^{cri} , M_t^{cri} are gauge independent, but (slightly) scheme dependent. \rightsquigarrow theoretical uncertainty

Effective potential

Determine $\tilde{\mu}^{\text{cri}}$ and $\tilde{M}_{H}^{\text{cri}}$ for given M_{t} (or $\tilde{M}_{t}^{\text{cri}}$ for given M_{H}) so that

$$V_{\mathrm{eff}}(\tilde{\mu}^{\mathrm{cri}}) = V_{\mathrm{eff}}(v) \approx 0, \qquad V_{\mathrm{eff}}'(\tilde{\mu}^{\mathrm{cri}}) = 0$$

 \rightsquigarrow Vacuum is stable for $M_H \ge \widetilde{M}_H^{\text{cri}}$ (or $M_t \le \widetilde{M}_t^{\text{cri}}$).

Caveat: Reorganize $V_{\text{eff}}(H)$ in powers of \hbar so that expansion coefficients are gauge independent at its extrema Andreassen *et al.*,

PRL113(2014)241801

Combined results

PRL 115, 201802 (2015)

PHYSICAL REVIEW LETTERS

week ending 13 NOVEMBER 2015

Stability of the Electroweak Vacuum: Gauge Independence and Advanced Precision

A. V. Bednyakov, ¹ B. A. Kniehl, ² A. F. Pikelner, ² and O. L. Veretin ²

¹Joint Institute for Nuclear Research, 141980 Dubna, Russia

²II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany (Received 30 July 2015; revised manuscript received 24 August 2015; published 9 November 2015)

C++ library mr BK, Pikelner, Veretin, CPC206(2016)84

- From $\lambda(\mu)$: $M_t^{\text{cri}} = (171.03 \pm 0.30^{+0.17}_{-0.36})$ GeV
- From $V_{\text{eff}}(H)$: $\widetilde{M}_t^{\text{cri}} = (171.23 \pm 0.30^{+0.17}_{-0.36})$ GeV
- Combination: $\widehat{M}_t^{\text{cri}} = (171.13 \pm 0.30^{+0.26}_{-0.41}) \text{ GeV}$
- NNLO QCD: $M_t = (170.4 \pm 1.2)$ GeV Moch et al., PRD96(2017)014011

Status quo: SM stable

- PDG 2018 & ABMP M_t
- $\lambda(\mu) > 0$ throughout
- Minimum at $\log_{10} \mu = 17.5$ cf. $\log_{10} M_P = 19.1$

Input parameters crucial

• ABMP $\alpha_s^{\rm NNLO}(M_Z) = 0.1147 \pm 0.0008$

Research plans for vacuum stability

- SM RG functions at 4 loops
- threshold corrections at 3 loops w/ full mass dependences
- quantum gravity effects, e.g., via higher-dimensional operators
- Higher precision in α_s and M_t
- V_{eff}(H) at 4 loops in covariant gauge first step: 3 loops in general scalar theory BK, Pikelner, Veretin, NPB937(2018)533
- extended Higgs sectors, Higgs portals (SMASH etc.)
- cosmological implications on minimal-inflation models;
 production of stochastic gravitational-wave background

Research plans for high-precision Higgs observables

- Higgs effective couplings to gluons and quarks: power suppressed m_t terms at 3 loops via full set of (mixed) D=6 composite operators w/ RG resummation
- gluon and quark effective couplings of Higgses w/ odd or indefinite CP
- hadronic decay width at 5 loops, including final states with bottom
- all SM decay channels w/ full mass dependences at 2 loops
- higher-order RC to (differential) production cross sections
- input from QT.2: generalized unitarity methods, massive higher-loop integrals first step: 3-loop massive tadpoles and polylogarithms through weight six BK, Pikelner, Veretin, JHEP1708(2017)024
- EFT predictions for differential distributions; implementation of higher-dimensional EFT operators in MC generators; assessment of validiy range of EFT expansion