Production of dark matter axions from global strings

Ken'ichi Saikawa (Max-Planck-Institute for Physics)

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

in collaboration with Javier Redondo (Zaragoza U./MPP) and Alejandro Vaquero (Utah U.)

5 June 2019, 15th PATRAS Workshop on Axions, WIMPs and WISPs, Albert-Ludwigs-University Freiburg

Axion dark matter mass

- Experiments will cover many orders of magnitudes in the axion mass...
- What is the "typical" theoretical prediction for axion dark matter mass?
- How to interpret experimental results?

Axion dark matter mass

• Relic axion abundance depends on the Peccei-Quinn scale, and hence on the axion mass.

$$\Omega_a = \Omega_a(f_a), \quad m_a \simeq 57 \,\mu \text{eV} \left(\frac{10^{11} \,\text{GeV}}{f_a}\right)$$

• Assuming axions are the dominant component of dark matter, one can guess what is their mass.

$$\Omega_a h^2 = 0.12 \qquad \Longrightarrow \qquad m_a = ??? \,\mu \text{eV}$$

• How axions are produced in the early universe ?

Assumptions in cosmology

- Many different theoretical possibilities and different consequences.
- A simple scenario based on three assumptions:
 - I. PQ symmetry has been broken after inflation.
 - 2. Standard expansion history (i.e. radiation domination) after axion number is fixed ($T \lesssim 1 \, {
 m GeV}$).
 - 3. Domain wall (DW) number (# of degenerate vacua) is $N_{DW} = 1$.
- In the scenario based on the above assumptions...
 - there should be one-to-one correspondence between the axion abundance and decay constant (and hence its mass).
 - we must take account of axions produced from global strings.

[Davis (1986)]

Axionic strings

$$\mathcal{L} = |\partial_{\mu}\phi|^2 - V(\phi), \quad V(\phi) = \lambda \left(|\phi|^2 - \frac{f_a^2}{2}\right)^2$$

• Form when $U(I)_{PQ}$ symmetry is spontaneously broken.

• Disappear around the epoch of the QCD phase transition (if $N_{DW} = I$).

Axionic strings

$$\mathcal{L} = |\partial_{\mu}\phi|^2 - V(\phi), \quad V(\phi) = \lambda \left(|\phi|^2 - \frac{f_a^2}{2}\right)^2 + \chi(T) \left(1 - \cos\left(\frac{a}{f_a}\right)\right)$$

Position space

• Form when $U(I)_{PQ}$ symmetry is spontaneously broken.

• Disappear around the epoch of the QCD phase transition (if $N_{DW} = I$).

Difficulty in string dynamics

- Two extremely different length scales.
 - String core radius $r_{\rm core} \sim m_s^{-1} \sim f_a^{-1}$

 m_s : mass scale of the UV completion

• Hubble radius H^{-1}

• String tension acquires a logarithmic correction:

$$\mu = \frac{\text{energy}}{\text{length}} = \int r dr \int_0^{2\pi} d\varphi \left[\left| \frac{\partial \phi}{\partial r} \right|^2 + \left| \frac{1}{r} \frac{\partial \phi}{\partial \varphi} \right|^2 + V(\phi) \right]$$
$$\approx 2\pi \int r dr \left| \frac{1}{r} \frac{\partial \phi}{\partial \varphi} \right|^2 \simeq \pi f_a^2 \log \left(m_s / H \right)$$

• At the QCD phase transition, $m_s/H_{\rm QCD} \sim 10^{30}$! The large enhancement $\log (m_s/H_{\rm QCD}) \sim 70$ is challenging for simulations with $\log (m_s/H) \lesssim 5-6$.

Scaling solution

• $\mathcal{O}(1)$ strings per horizon volume: $\mu \quad \mu \ell$

$$\rho_{\text{string}} = \xi \frac{\mu}{t^2} \sim \left. \frac{\mu}{\ell^3} \right|_{\ell \sim H^{-1} \sim t}$$

• The net energy density of radiated axions should be the same order.

$$\rho_a \sim \xi \frac{\mu}{t^2} \sim \xi H^2 f_a^2 \log(m_s/H)$$

 Axion number is sensitive to the (instantaneous) spectrum:

$$F\left(\frac{k}{H}, \frac{m_s}{H}\right) = \frac{1}{R^3} \frac{H}{\Gamma_{\text{str}\to a}} \frac{\partial}{\partial t} \left(R^3 \frac{\partial \rho_a}{\partial k}\right)$$

[Gorghetto, Hardy and Villadoro (2018)]

$$\Gamma_{
m str
ightarrow a}\simeq rac{\xi\mu}{t^3}$$
 : energy transfer rate from strings R : scale factor of the universe

Controversy on the spectrum

Assume a single power law in the intermediate range:

 $F \propto 1/k^q$ for $H \lesssim k \lesssim m_s$

If q > I, IR modes dominate. Many soft axions \rightarrow Higher mass is predicted.

[Davis (1986); Davis and Shellard (1989); Battle and Shellard (1994); Yamaguchi, Kawasaki and Yokoyama (1999); Hiramatsu et al. (2011); Kawasaki, KS and Sekiguchi (2015); Kawasaki et al. (2018)]

Controversy on the spectrum

If $q \leq I$, spectrum becomes hard. Few hard axions \rightarrow Lower mass is predicted.

q = in [Harari and Sikivie (1987); Hagmann and Sikivie (1991); Hagmann, Chang and Sikivie (2001)]

q < i in [Fleury and Moore (2016); Klaer and Moore (2017)]

Note:

- Value of q may depend on $\log(m_s/H)$.
- Careful extrapolation to large $\log(m_s/H)$ is required.

[Gorghetto, Hardy and Villadoro (2018)]

Field theoretic lattice simulation

• Solve EOM for a complex scalar field ϕ numerically.

$$\ddot{\phi} + 3H\dot{\phi} - \frac{1}{R^2}\nabla^2\phi + \lambda\phi(|\phi|^2 - v^2) = 0$$

 The largest number of grids N = 8192³ at the COBRA cluster (MPCDF, Garching).

 $\Rightarrow \log(m_s/H) \lesssim 7-8$ is feasible.

cf.

N = 512³ in Hiramatsu et al. (2011) N = 1600³ in Fleury and Moore (2016) N = 1250³ in Gorghetto et al. (2018) N = 4096³ in Kawasaki et al. (2018)

String density

Logarithmic growth compatible with previous results.

[Fleury and Moore (2016); Gorghetto, Hardy and Villadoro (2018)]

Spectrum of radiated axions

Fitting to a power law

Assume $F \propto 1/x^q$ in the intermediate range...

q seems to grow with log.

Extrapolation to large log

Summary

- Typical scenario for axion dark matter production:
 - Post-inflationary PQ symmetry breaking
 - Standard expansion history during/after QCD phase transition
 - No domain wall problem $(N_{DW} = I)$
- Relic abundance is sensitive to the detailed shape of the spectrum of axions produced by strings.
- Current simulation results indicate that
 - The spectrum evolves towards the IR-dominated shape.
 - A naive extrapolation gives higher axion dark matter mass (?)
- Two independent results appear to show a similar trend.

(see talk by Marco Gorghetto)

Backup slides

String density

Fitting to a power law

