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• Experiments will cover many orders of magnitudes in the axion mass…

• What is the “typical” theoretical prediction for axion dark matter mass?

• How to interpret experimental results?

Axion dark matter mass
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Excluded

(Astrophysics)

Possibility of dark matter



Axion dark matter mass

• Relic axion abundance depends on the Peccei-Quinn scale,        
and hence on the axion mass.

• Assuming axions are the dominant component of dark matter, 
one can guess what is their mass.

• How axions are produced in the early universe ?
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Assumptions in cosmology

• Many different theoretical possibilities and different consequences.

• A simple scenario based on three assumptions:

1. PQ symmetry has been broken after inflation.

2. Standard expansion history (i.e. radiation domination) after axion 
number is fixed (                ).

3. Domain wall (DW) number (# of degenerate vacua) is NDW = 1.

• In the scenario based on the above assumptions…

• there should be one-to-one correspondence between the axion 
abundance and decay constant (and hence its mass).

• we must take account of axions produced from global strings.
[Davis (1986)]
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Axionic strings

• Form when U(1)PQ symmetry is spontaneously broken.

• Disappear around the epoch of the QCD phase transition (if NDW = 1).

Position space
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Axionic strings

• Form when U(1)PQ symmetry is spontaneously broken.

• Disappear around the epoch of the QCD phase transition (if NDW = 1).

Position space
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Difficulty in string dynamics

• Two extremely different length scales.

• String core radius

• Hubble radius

• String tension acquires a logarithmic correction:

• At the QCD phase transition,                             !                              

The large enhancement                                  is challenging 

for simulations with                            .

: mass scale of the UV completion
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Scaling solution
•         strings per horizon volume:

• The net energy density of radiated 
axions should be the same order.

• Axion number is sensitive to the 
(instantaneous) spectrum:
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[Gorghetto, Hardy and Villadoro (2018)]

: scale factor of the universe

: energy transfer rate from strings



Controversy on the spectrum

Assume a single power law in the intermediate range:

If q > 1, IR modes dominate.
Many soft axions → Higher mass is predicted.

[Davis (1986); Davis and Shellard (1989); Battle and Shellard (1994); Yamaguchi, Kawasaki and Yokoyama (1999); 
 Hiramatsu et al. (2011); Kawasaki, KS and Sekiguchi (2015); Kawasaki et al. (2018)]

for
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Controversy on the spectrum

If q ≤ 1, spectrum becomes hard.
Few hard axions → Lower mass is predicted.

[Fleury and Moore (2016); Klaer and Moore (2017)]

[Harari and Sikivie (1987); Hagmann and Sikivie (1991); Hagmann, Chang and Sikivie (2001)]q = 1 in

q < 1 in

Note:

• Value of q may depend on                  .

• Careful extrapolation to large                  is required.
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Field theoretic lattice simulation

• Solve EOM for a complex scalar field     numerically.

• The largest number                                                          
of grids N = 81923                                                                     
at the COBRA cluster                                      
(MPCDF, Garching).

cf.
N = 5123 in Hiramatsu et al. (2011)
N = 16003 in Fleury and Moore (2016)
N = 12503 in Gorghetto et al. (2018)
N = 40963 in Kawasaki et al. (2018)

is feasible.
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Logarithmic growth compatible with previous results.
[Fleury and Moore (2016); Gorghetto, Hardy and Villadoro (2018)]

Preliminary
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Spectrum of radiated axions
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Assume                  in the intermediate range…

q seems to grow with log.

Preliminary

13/15



10 20 30 40 50 60 70

log(ms/H)

10�2

10�1

100

101

102

103

104

na
Hf 2

a

simulation

q = 0.1 log +0.15

q = 1.0

q = 0.85
10�1

100

101

102

103

m
a
[µ

eV
]

Extrapolation to large log

Preliminary

14/15



Summary

• Typical scenario for axion dark matter production:

• Post-inflationary PQ symmetry breaking

• Standard expansion history during/after QCD phase transition

• No domain wall problem (NDW = 1)

• Relic abundance is sensitive to the detailed shape of the spectrum of 
axions produced by strings.

• Current simulation results indicate that 

• The spectrum evolves towards the IR-dominated shape.

• A naive extrapolation gives higher axion dark matter mass (?)

• Two independent results appear to show a similar trend.                                          
(see talk by Marco Gorghetto)
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Backup slides



String density
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Fitting to a power law
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