Advanced Axion Dark Matter detector

Really strong magnets, lower temperatures, and multiple cavities

DBT University of Florida

for the ADMX collaboration and the NHMFL

• Power from ADMX cavity goes as B^2V

$$P = 130 \text{ yW}\left(\frac{V}{200 \ \ell}\right) \left(\frac{B_0}{8 \text{ Tesla}}\right)^2 \left(\frac{C_{nl}}{0.5}\right) \left(\frac{g_{\gamma}}{0.36}\right)^2 \cdot \left(\frac{\rho_{\mathrm{a}}}{0.5 \text{ yg/cm}^3}\right) \left(\frac{f_{\mathrm{a}}}{1 \text{ GHz}}\right) \left(\frac{Q_{\mathrm{L}}}{100,000}\right)$$

- 130 yW is about 200 photons/sec
- $g_{\gamma} \approx 0.36$ (DFSZ) while $g_{\gamma} \approx 0.97$ (KSVZ)
- $Q_{\rm L} \simeq 120,000 \, (\text{GHz}/f)^{2/3} \, (\text{ASE})$ so bandwidth is 10 kHz

Strawman: Single cavity, 8 T field

- Power and scan rate decrease as frequency goes up ⊗. Just the opposite of what we want.
- Would have to give up on DFSZ above 1.4 GHz.
- New Magnet: Higher field → Smaller volume → Search higher frequencies

NHMFL No-Insulation Magnet Technology

- 42.5 T test magnet
 - Total central field = 42.5 T
 - No-insulation coil = 11.5 T
 - Resistive magnet = 31.0 T

Seungyong Hahn and Ian Dixon

32 T, 15 cm diameter NI ReBCO design from NHMFL

								Time for
Magnet	Diam	TM 010	В	Cavities	Total V	Tnoise	Р	an octive
	cm	freq	Т		liters	K	уW	months
ADMX	42	0.55	7.4	1	138	0.17	107	16
ADMX	17	1.3	7.4	4	95	0.19	240	14
"NMR"	5	4.3	18	1	0.3	0.17	3	38269
Bruker NMR	5	4.3	28	1	0.3	0.17	8	6536
NI ReBaCuO	15	1.5	32	1	7	0.17	134	15
NI ReBaCuO	6	3.6	32	4	5	0.24	297	20

- Should allow 1.5-10 GHz with 1, 4, 8 cavities
- Search rate about same as now with ADMX at 700 MHz.
- Increase to 40 T would improve rate substantially, to an octave in 8-9 months

