QCD axions off the beaten tracks

Based on: "Astrophobic Axions" Phys.Rev.Lett. 120 (2018) no.26, 261803 [arXiv:1712.04940] In collaboration with L. Di Luzio (IPPP, Durham), F. Mescia (Barcelona U.), P. Panci (CERN) and R. Ziegler (CERN)

"Redefining the Axion window" Phys.Rev.Lett. 118 (2017) no.3, 031801 [arXiv:1610.07593] "Window for preferred Axion models" Phys.Rev. D96 (2017) no.7, 075003 [arXiv:1705.05370] In collaboration with Luca Di Luzio (IPPP, Durham) and Federico Mescia (Barcelona U.)

"The KLASH Conceptual Design Report: The physics case" (to appear) In collaboration with Maurizio Giannotti (Barry U.) and Luca Visinelli (Uppsala U. & Nordita)

Enrico Nardi

15th PATRAS Workshop - Freiburg, June 3-7, 2019

- QCD is defined in terms of two dimensionless parameters which are not predicted by the theory. Measurements yield:
 - $\alpha_{s} \sim O(0.1-1)$ and $\overline{\theta} < 10^{-10} \left[\cancel{P} \& \cancel{T} \right] \leftarrow d_{n} \lesssim 3 \cdot 10^{-26} e \, \mathrm{cm}$

- QCD is defined in terms of two dimensionless parameters which are not predicted by the theory. Measurements yield:
 - $\alpha_{s} \sim O(0.1-1)$ and $\overline{\theta} < 10^{-10} \left[P \& T \right] \leftarrow d_{n} \lesssim 3 \cdot 10^{-26} e \,\mathrm{cm}$

$$\mathcal{L}_{\text{QCD}} = \sum_{q} \overline{q} \left(i D - m_{q} e^{i\theta_{q}} \right) q - \frac{1}{4} G_{a}^{\mu\nu} G_{\mu\nu}^{a} - \theta \frac{\alpha_{s}}{8\pi} G_{a}^{\mu\nu} \tilde{G}_{\mu\nu}^{a} \qquad \left[\overline{\theta} = \theta - \theta_{q} \right]$$

- QCD is defined in terms of two dimensionless parameters which are not predicted by the theory. Measurements yield:
 - $\alpha_{s} \sim O(0.1-1)$ and $\overline{\theta} < 10^{-10} \left[P \& T \right] \leftarrow d_{n} \lesssim 3 \cdot 10^{-26} e \,\mathrm{cm}$

$$\mathcal{L}_{\text{QCD}} = \sum_{q} \overline{q} \left(i D - m_{q} e^{i\theta_{q}} \right) q - \frac{1}{4} G_{a}^{\mu\nu} G_{\mu\nu}^{a} - \theta \frac{\alpha_{s}}{8\pi} G_{a}^{\mu\nu} \tilde{G}_{\mu\nu}^{a} \qquad \left[\overline{\theta} = \theta - \theta_{q} \right]$$

•This is qualitatively different from other small values problems:

- QCD is defined in terms of two dimensionless parameters which are not predicted by the theory. Measurements yield:
 - $\alpha_{s} \sim O(0.1-1)$ and $\overline{\theta} < 10^{-10} \left[P \& T \right] \leftarrow d_{n} \lesssim 3 \cdot 10^{-26} e \,\mathrm{cm}$

$$\mathcal{L}_{\text{QCD}} = \sum_{q} \overline{q} \left(i D - m_{q} e^{i\theta_{q}} \right) q - \frac{1}{4} G_{a}^{\mu\nu} G_{\mu\nu}^{a} - \theta \frac{\alpha_{s}}{8\pi} G_{a}^{\mu\nu} \tilde{G}_{\mu\nu}^{a} \qquad \left[\overline{\theta} = \theta - \theta_{q} \right]$$

•This is **qualitatively different** from other small values problems:

• In the SM $\overline{\theta}$ receives the first finite Log corrections at $O(\alpha^2)$ Unlike m_{H^2} that is quadratically sensitive to Λ^2_{UV}

[Ellis, Gaillard (1979) Khriplovich, Vainshtein (1994)]

- QCD is defined in terms of two dimensionless parameters which are not predicted by the theory. Measurements yield:
 - $\alpha_{s} \sim O(0.1-1)$ and $\overline{\theta} < 10^{-10} \left[P \& T \right] \leftarrow d_{n} \lesssim 3 \cdot 10^{-26} e \,\mathrm{cm}$

$$\mathcal{L}_{\text{QCD}} = \sum_{q} \overline{q} \left(i D - m_{q} e^{i\theta_{q}} \right) q - \frac{1}{4} G^{\mu\nu}_{a} G^{a}_{\mu\nu} - \theta \frac{\alpha_{s}}{8\pi} G^{\mu\nu}_{a} \tilde{G}^{a}_{\mu\nu} \qquad \boxed{\overline{\theta} = \theta - \theta_{q}}$$

•This is qualitatively different from other small values problems:

- In the SM $\overline{\theta}$ receives the first finite Log corrections at O(α^2) [Ellis, Gaillard (1979) Khriplovich, Vainshtein (1994)] Unlike m_H^2 that is quadratically sensitive to Λ^2_{UV}
- Unlike Λ_{cc} , $y_{e,u,d} \sim 10^{-6} \div 10^{-5}$ it evades explanations based on environmental selection [Ubaldi, 0811.1599, Kaloper & Terning, 1710.01740, Dine, Stephenson Haskins, Ubaldi, & Di Xu 1801.03466]

- QCD is defined in terms of two dimensionless parameters which are not predicted by the theory. Measurements yield:
 - $\alpha_{s} \sim O(0.1-1)$ and $\overline{\theta} < 10^{-10} \left[P \& T \right] \leftarrow d_{n} \lesssim 3 \cdot 10^{-26} e \,\mathrm{cm}$

$$\mathcal{L}_{\text{QCD}} = \sum_{q} \overline{q} \left(i D - m_{q} e^{i\theta_{q}} \right) q - \frac{1}{4} G_{a}^{\mu\nu} G_{\mu\nu}^{a} - \theta \frac{\alpha_{s}}{8\pi} G_{a}^{\mu\nu} \tilde{G}_{\mu\nu}^{a} \qquad \boxed{\overline{\theta} = \theta - \theta_{q}}$$

•This is qualitatively different from other small values problems:

- In the SM $\overline{\theta}$ receives the first finite Log corrections at $O(\alpha^2)$ [Ellis, Gaillard (1979) Khriplovich, Vainshtein (1994)] Unlike m_{H^2} that is quadratically sensitive to Λ^2_{UV}
- Unlike Λ_{cc} , $y_{e,u,d} \sim 10^{-6} \div 10^{-5}$ it evades explanations based on environmental selection [Ubaldi, 0811.1599, Kaloper & Terning, 1710.01740, Dine, Stephenson Haskins, Ubaldi, & Di Xu 1801.03466]

If Multiverse, $\overline{\theta}$ becomes the most urgent s.v. problem in the SM

The Peccei-Quinn solution

The Peccei-Quinn solution

[Peccei, Quinn (1977), Weinberg (1978), Wilczek (1978)]

• Assume a global $U(1)_{PQ}$:

(i) Spontaneously broken(ii) QCD anomalous

The Peccei-Quinn solution

[Peccei, Quinn (1977), Weinberg (1978), Wilczek (1978)]

• Assume a global $U(1)_{PQ}$:

(i) Spontaneously broken(ii) QCD anomalous

•Implies a PNGB of $U(1)_{PQ}$: the Axion.

Axion field comes equipped with a shift symmetry: $a(x) \rightarrow a(x) + \delta \alpha f_a$

$$\mathcal{L}_{\text{eff}} = \left(\overline{\theta} + \frac{a}{f_a}\right) \frac{\alpha_s}{8\pi} G_a^{\mu\nu} \tilde{G}_{\mu\nu}^a - \frac{1}{2} \partial^{\mu} a \partial_{\mu} a + \mathcal{L}(\partial_{\mu} a, \psi)$$
$$\theta_{\text{eff}}(x)$$

and with a periodic potential $V(\Theta_{eff}) \rightarrow V_{min}$ when $\Theta_{eff} \rightarrow O$

Axion models

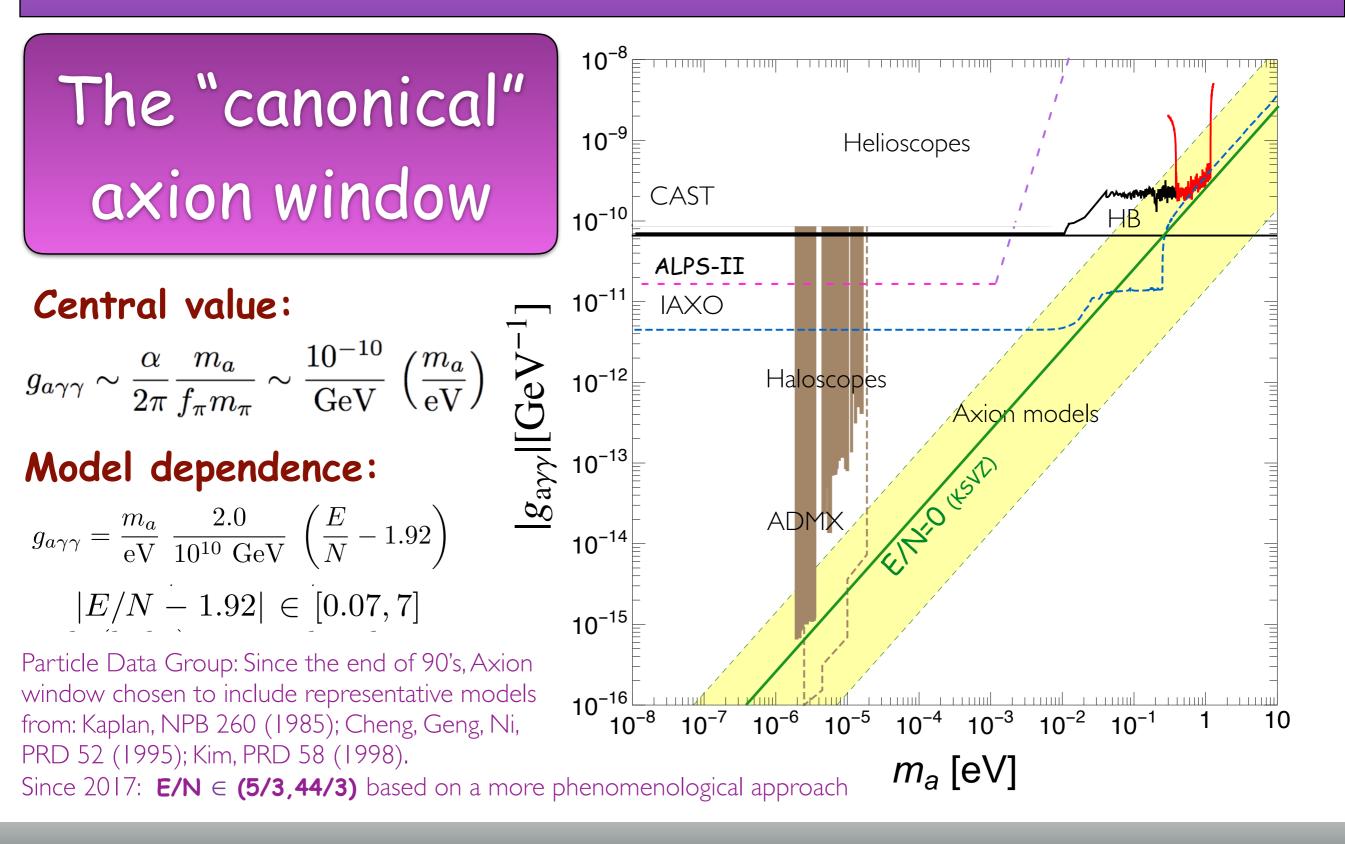
• PQWW axion:

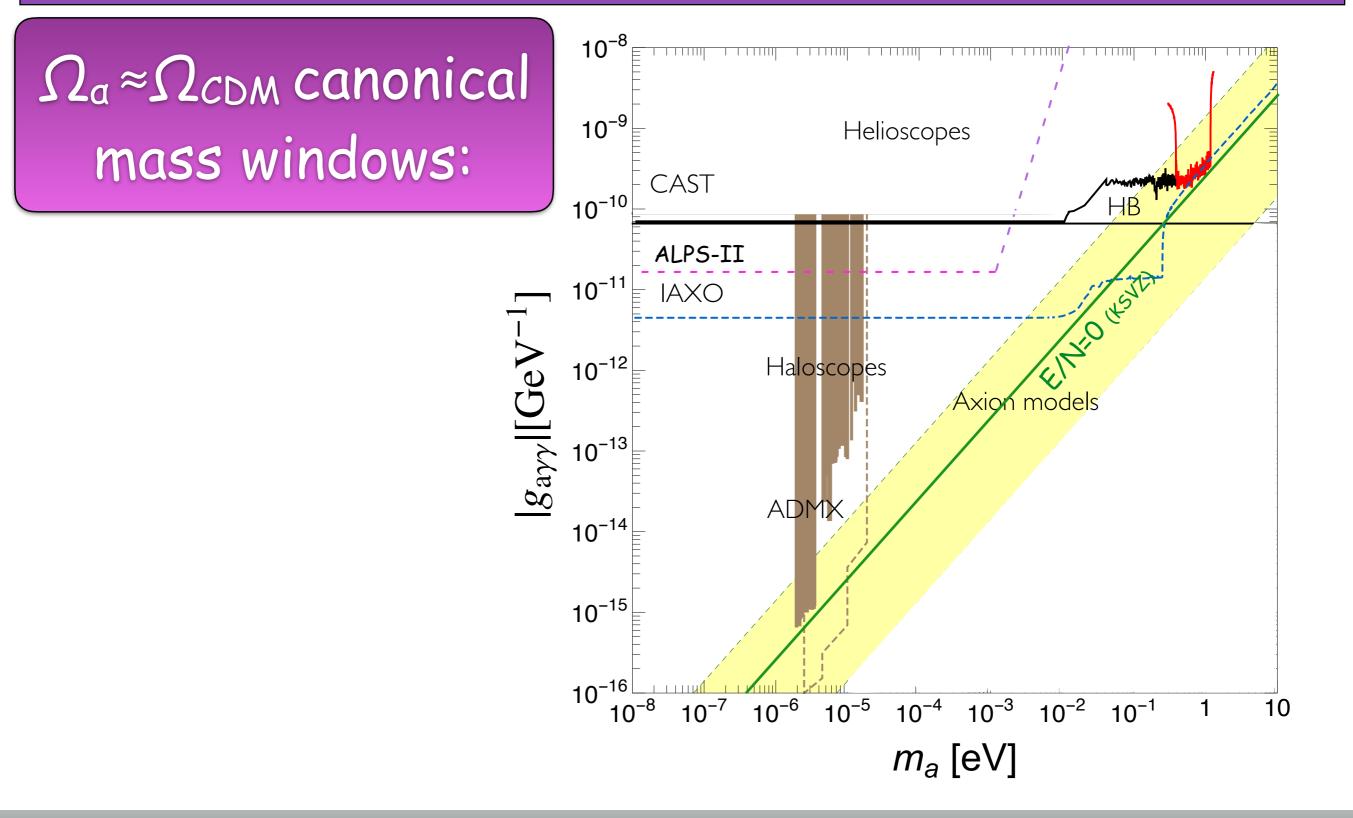
Axion identified with the phase of the Higgs in a 2HDM $(f_a \sim V_{EW} \text{ was quickly ruled out long ago})$ [Peccei, Quinn (197

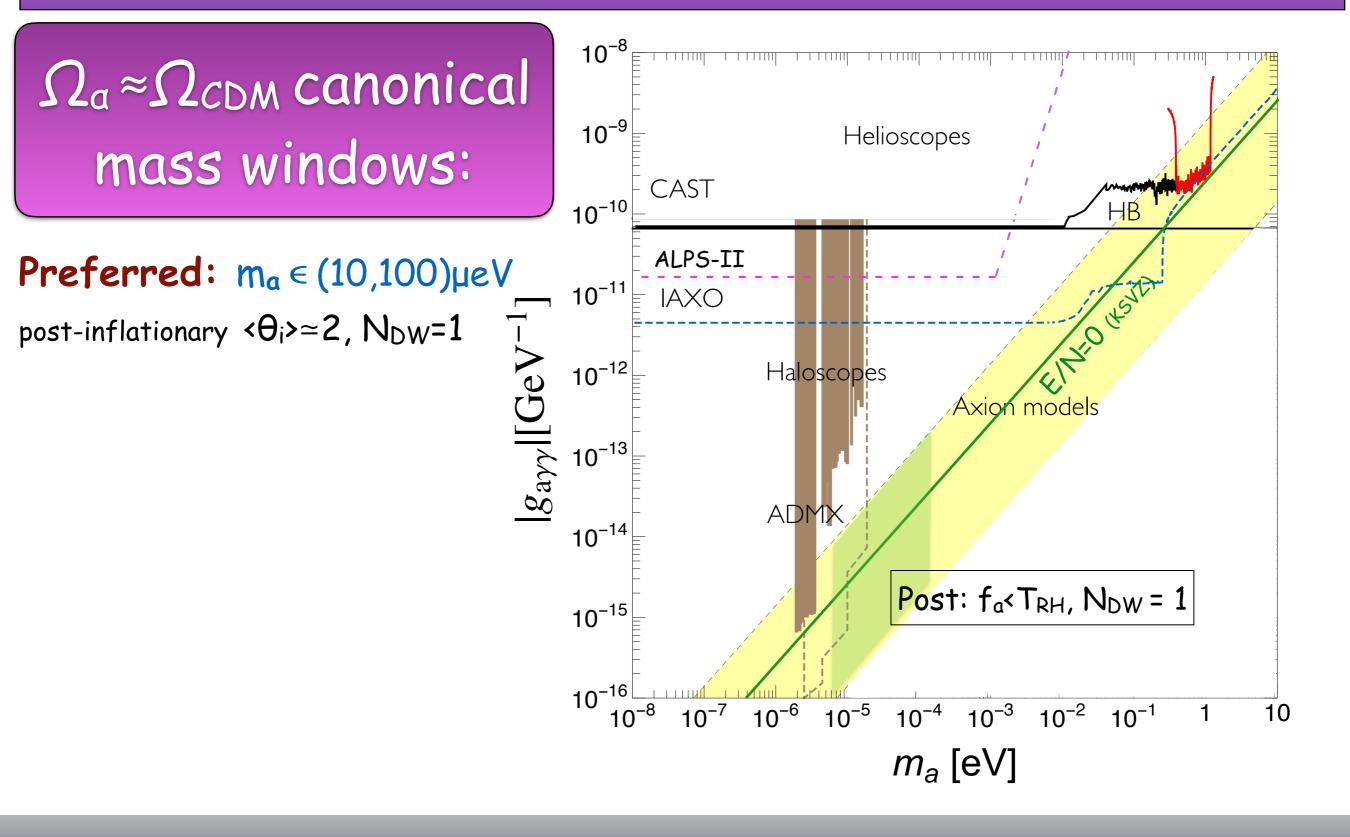
[Peccei, Quinn (1977), Weinberg (1978), Wilczek (1978)]

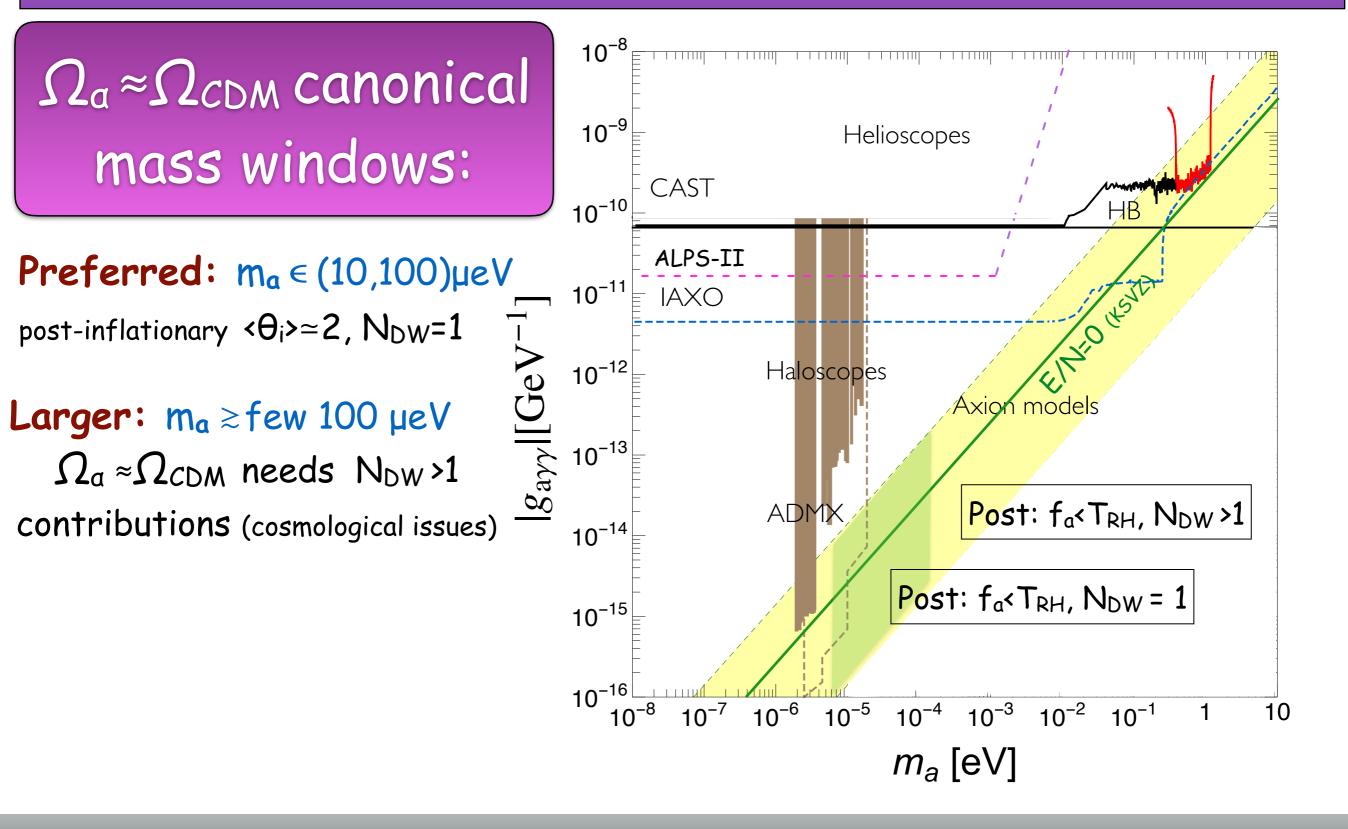
Viable models require $f_a \gg V_{EW}$: Most viable axion models fall in two classes:

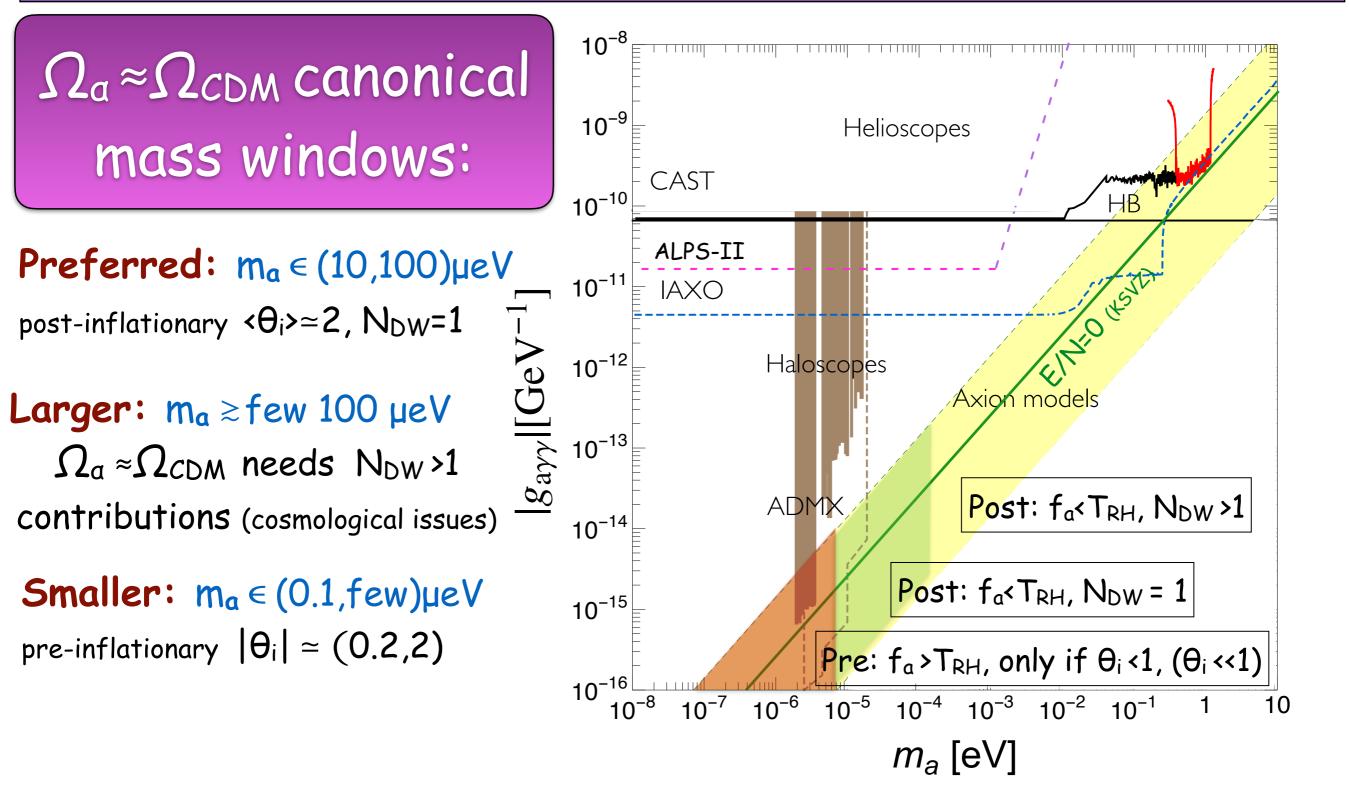
- DSFZ Axion: SM quarks and Higgses, charged under PQ. Requires 2HDM + 1 scalar singlet. SM leptons are also PQ charged. [Dine, Fischler, Srednicki (1981), Zhitnitsky (1980)]
- KSVZ Axion (or hadronic axion): All SM fields are neutral under PQ. QCD anomaly induced by new quarks, vectorlike under SM, chiral under PQ + 1 scalar singlet

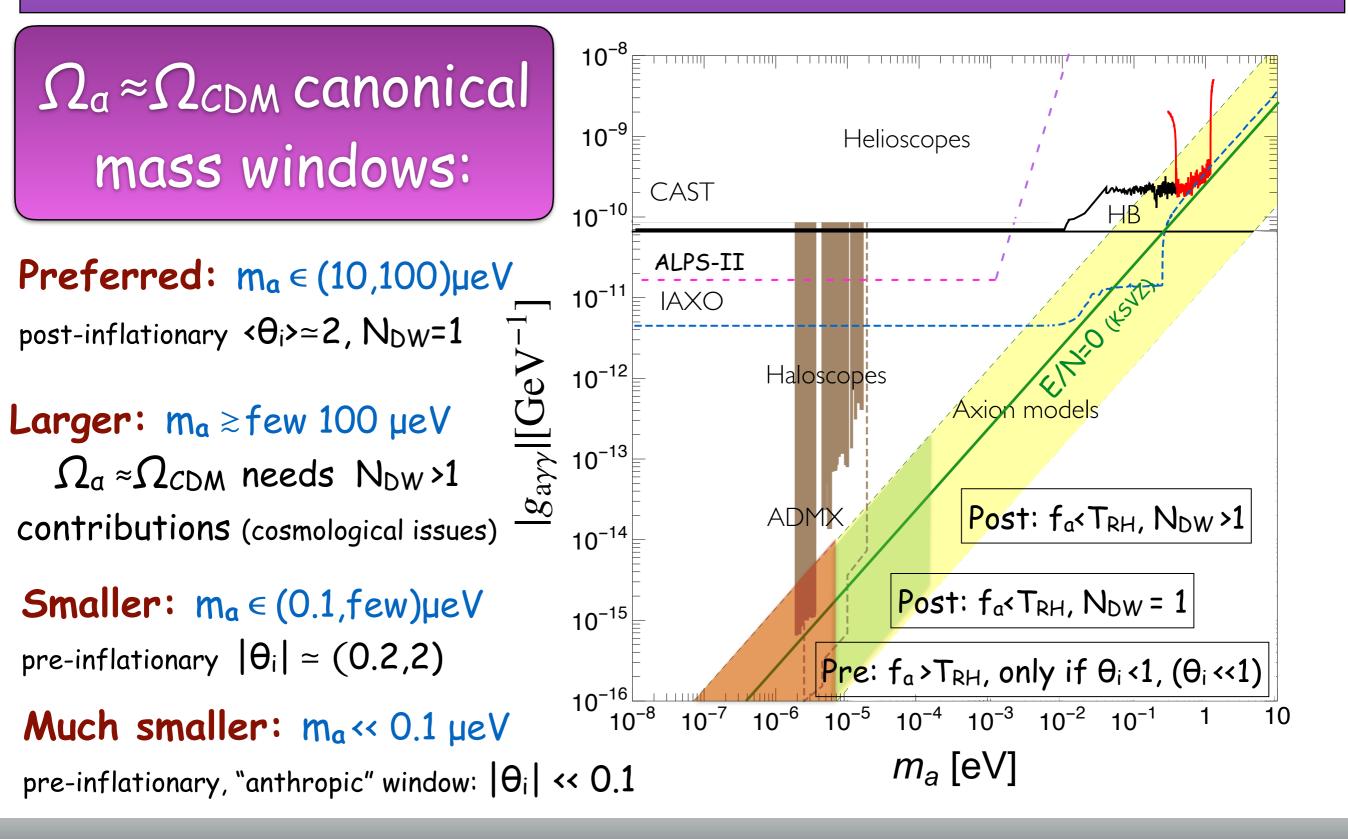




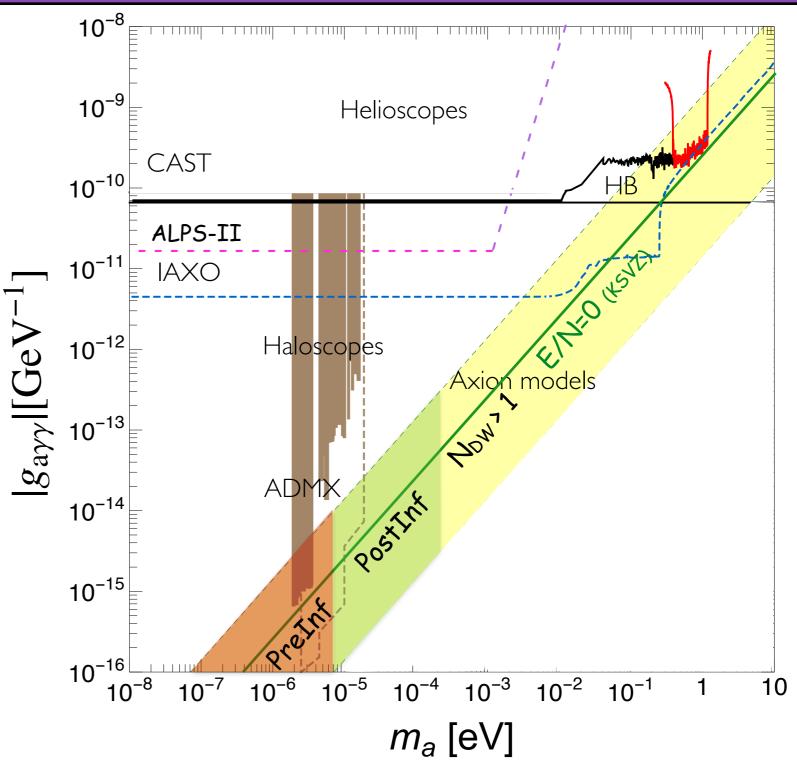






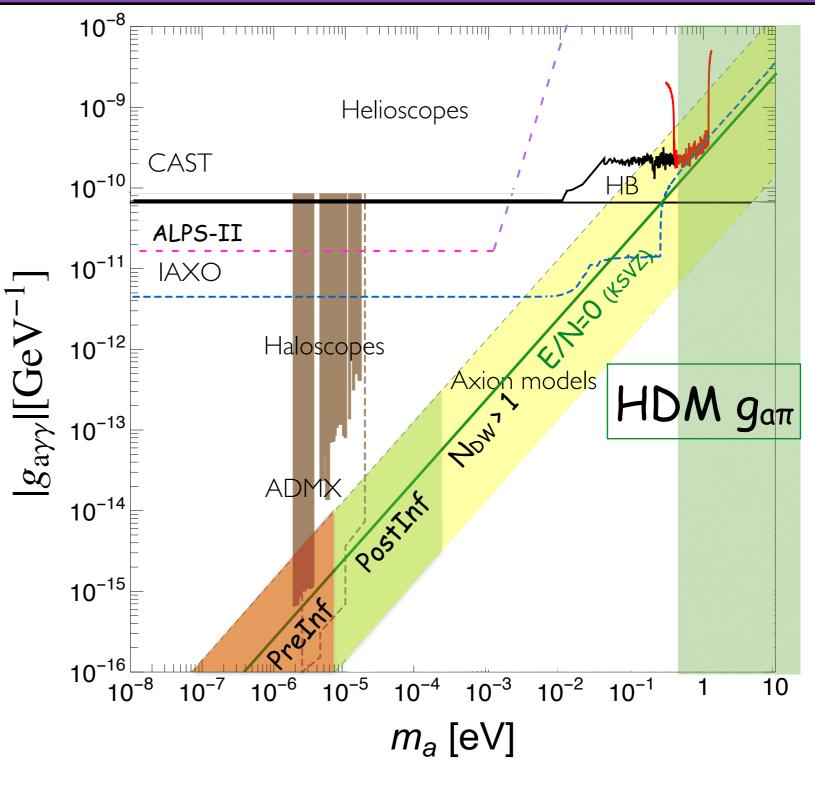


Sometimes limits from astrophysics on $g_{ae}, g_{aN}, g_{a\pi}$ are fed into g_{ay} - m_a plots

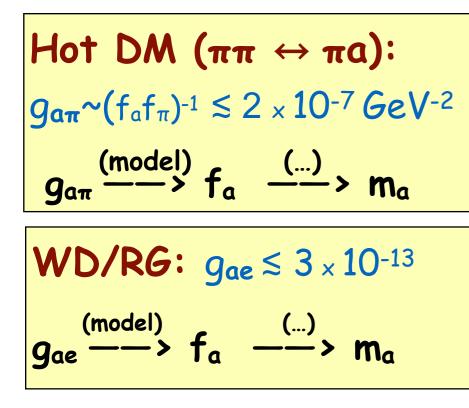


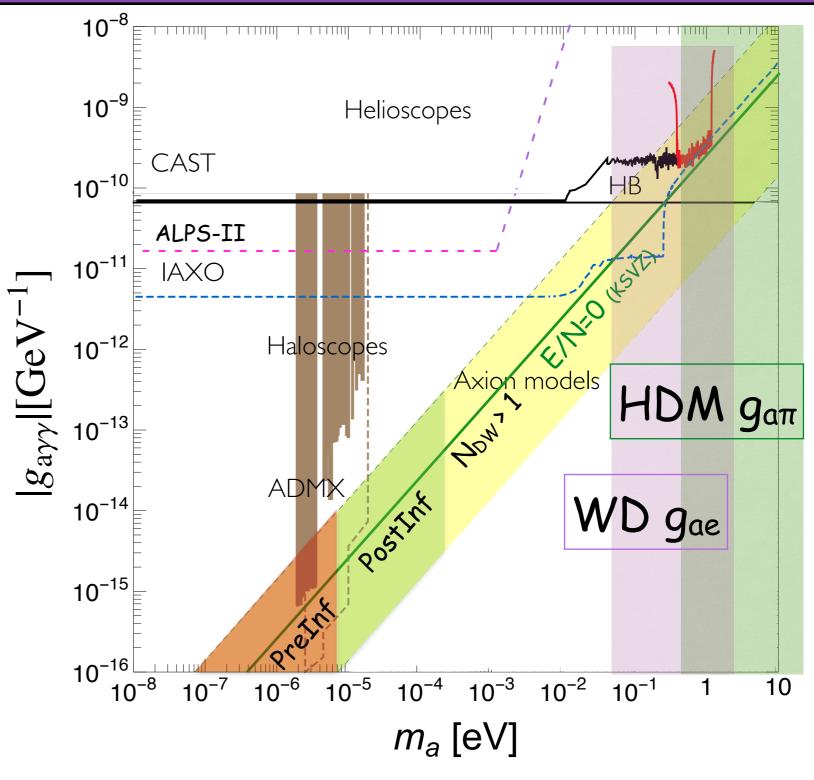
Sometimes limits from astrophysics on $g_{ae}, g_{aN}, g_{a\pi}$ are fed into $g_{a\gamma}-m_a$ plots

Hot DM (
$$\pi\pi \leftrightarrow \pi a$$
):
 $g_{a\pi} \sim (f_a f_{\pi})^{-1} \leq 2 \times 10^{-7} \text{ GeV}^{-2}$
 $g_{a\pi} \xrightarrow{(model)} f_a \xrightarrow{(...)} m_a$

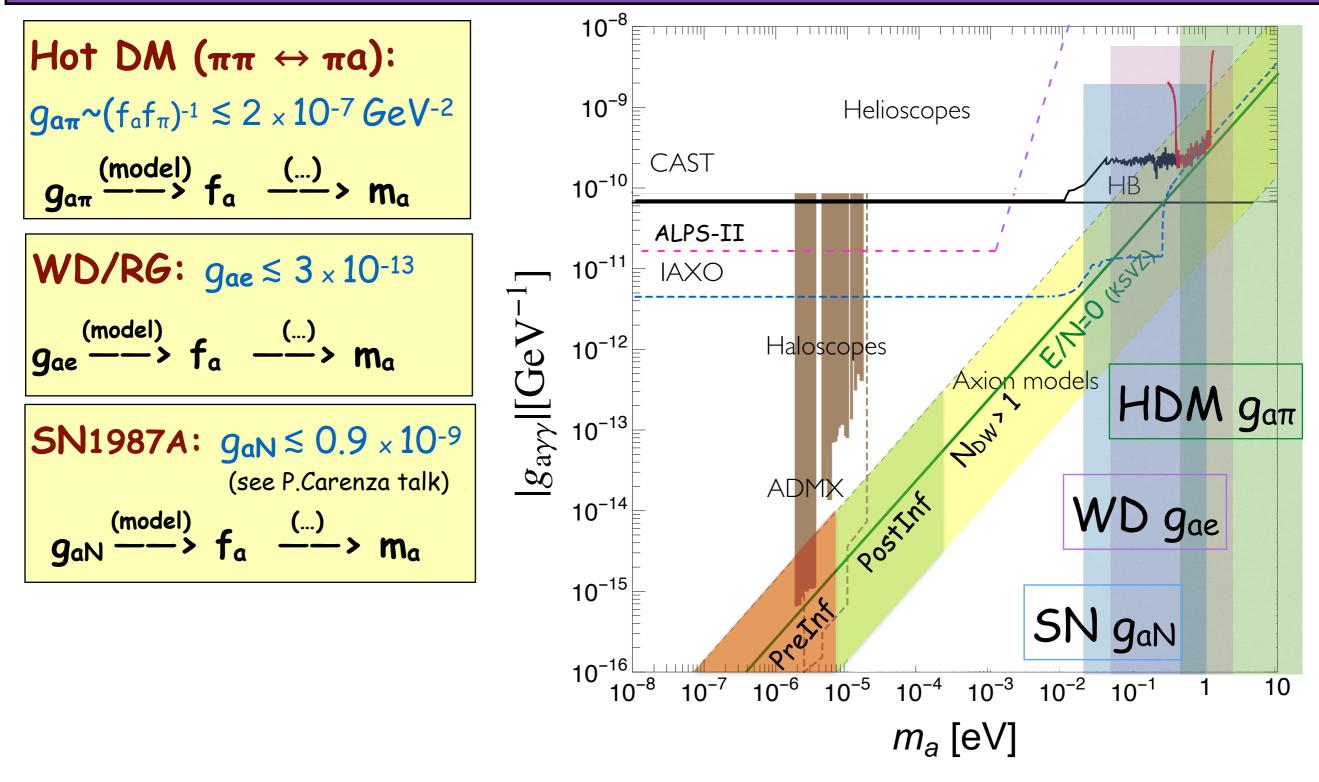


Sometimes limits from astrophysics on $g_{ae}, g_{aN}, g_{a\pi}$ are fed into g_{ay} -ma plots

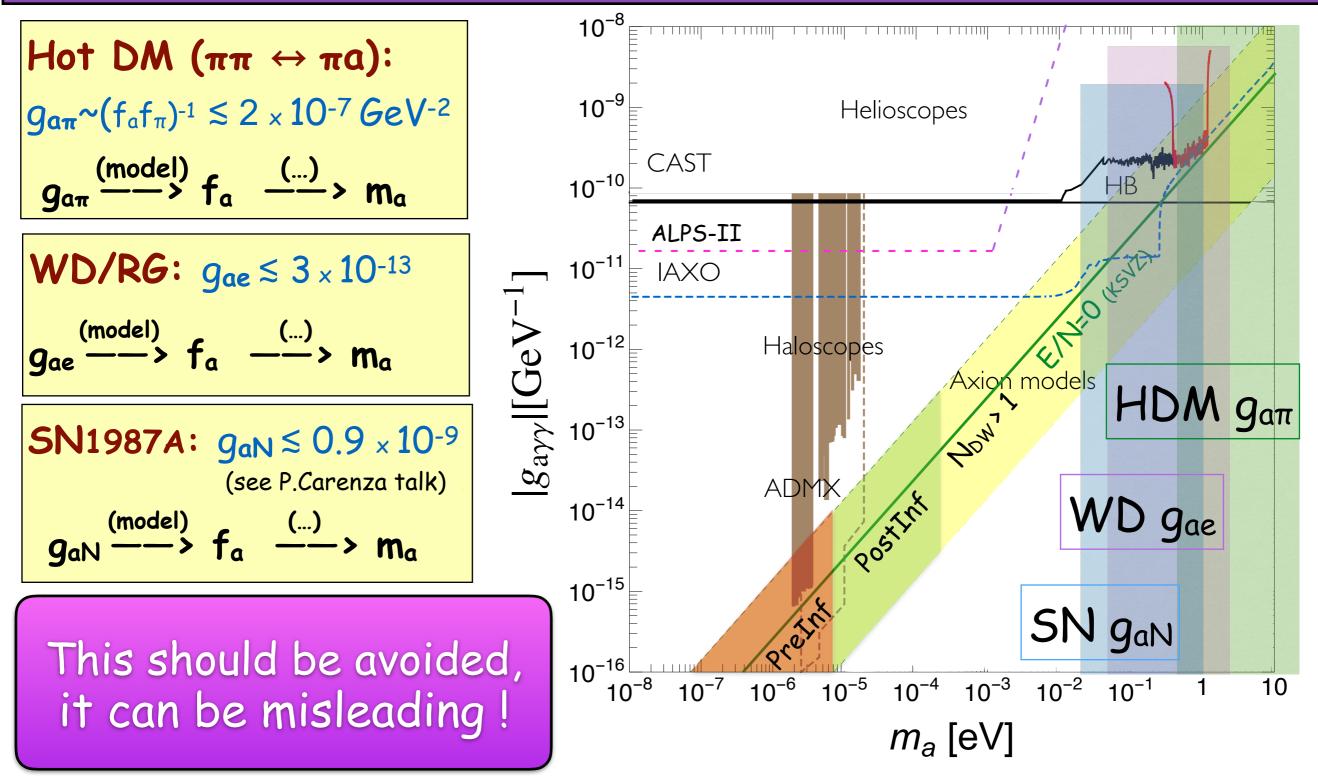




Sometimes limits from astrophysics on $g_{ae}, g_{aN}, g_{a\pi}$ are fed into g_{ay} -ma plots



Sometimes limits from astrophysics on $g_{ae}, g_{aN}, g_{a\pi}$ are fed into g_{ay} -ma plots

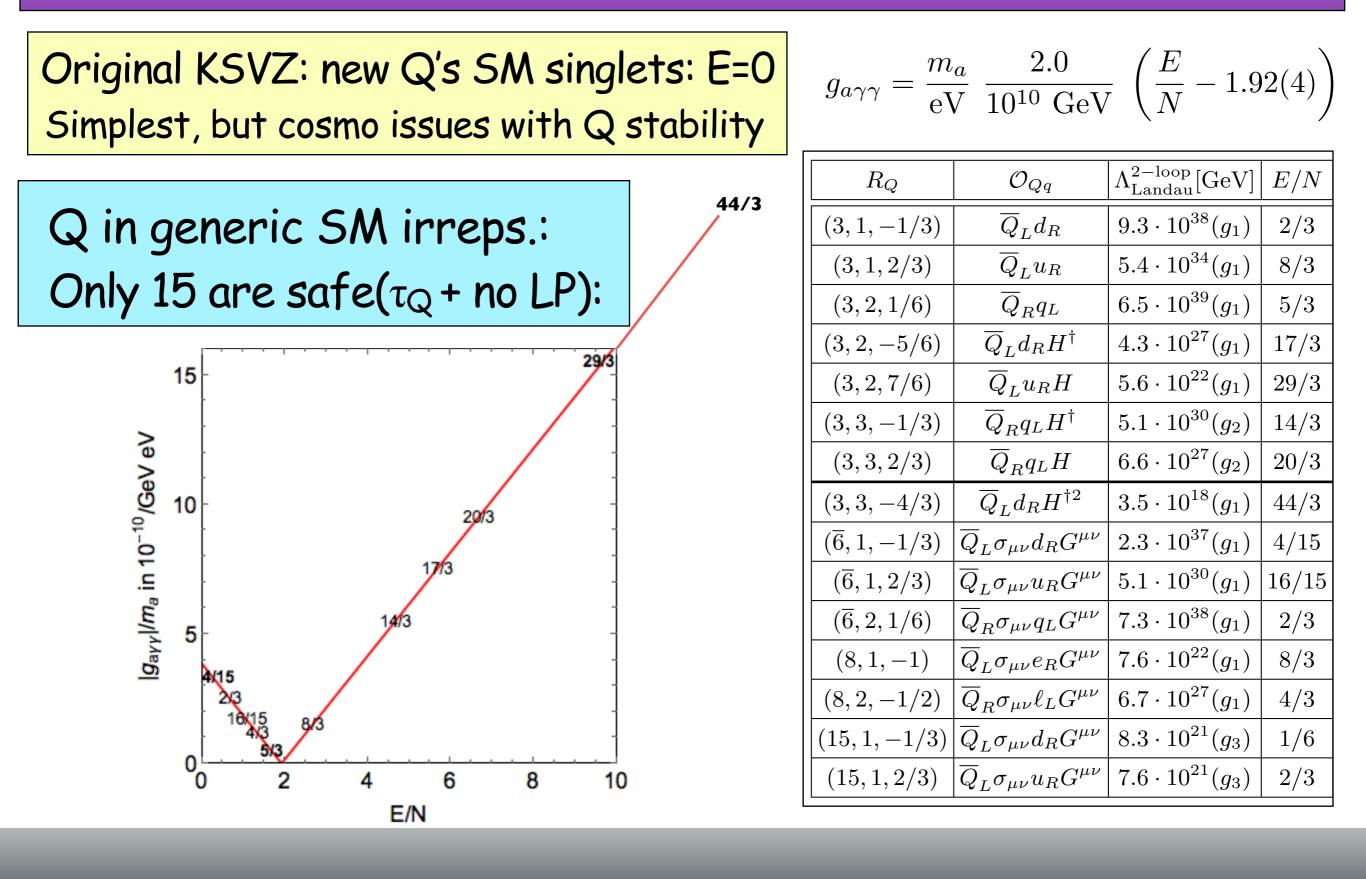


Axion-photon coupling $g_{\alpha\gamma}$: KSVZ-type

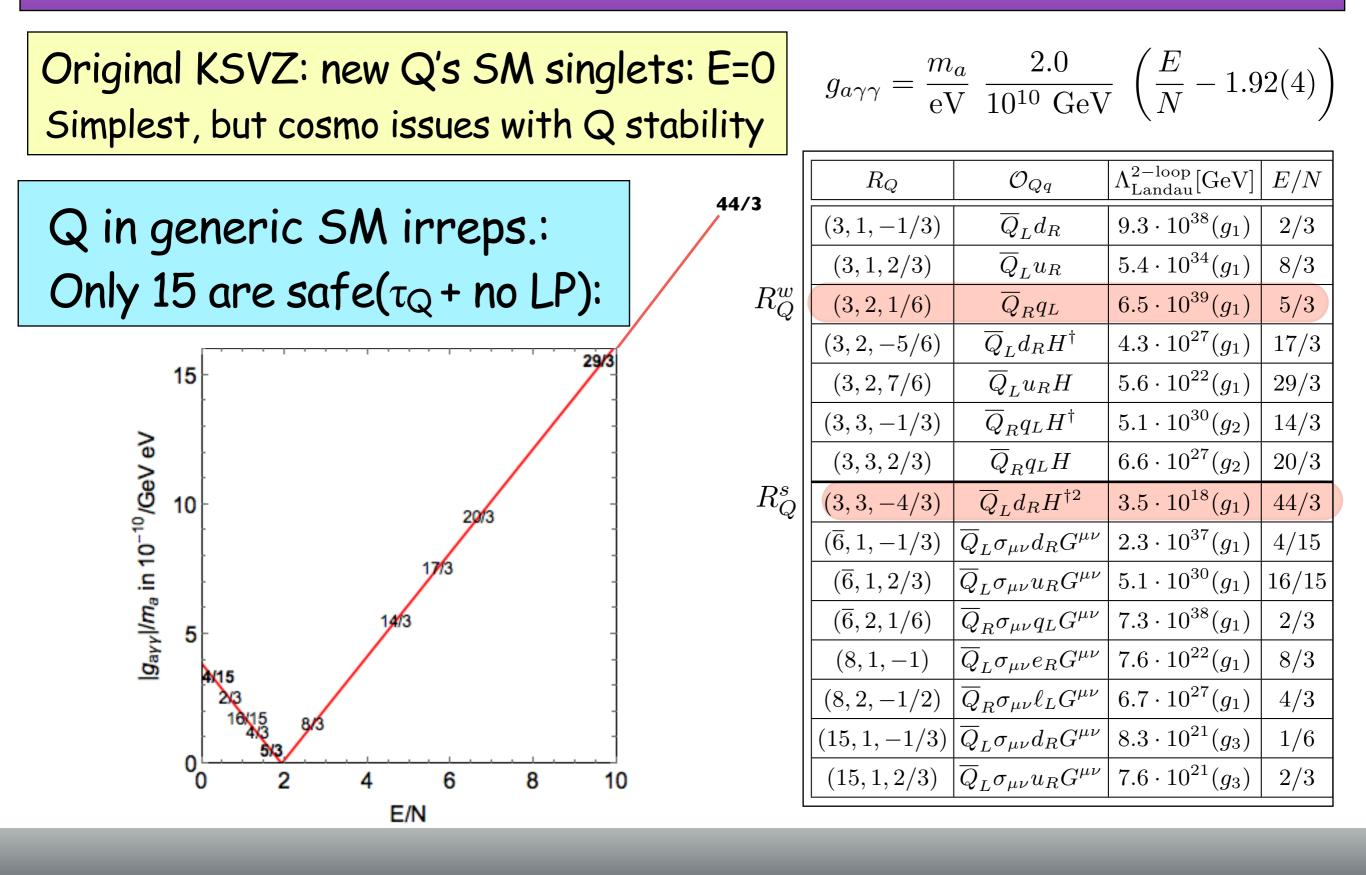
Original KSVZ: new Q's SM singlets: E=O Simplest, but cosmo issues with Q stability

 $g_{a\gamma\gamma} = \frac{m_a}{\text{eV}} \frac{2.0}{10^{10} \text{ GeV}} \left(\frac{E}{N} - 1.92(4)\right)$

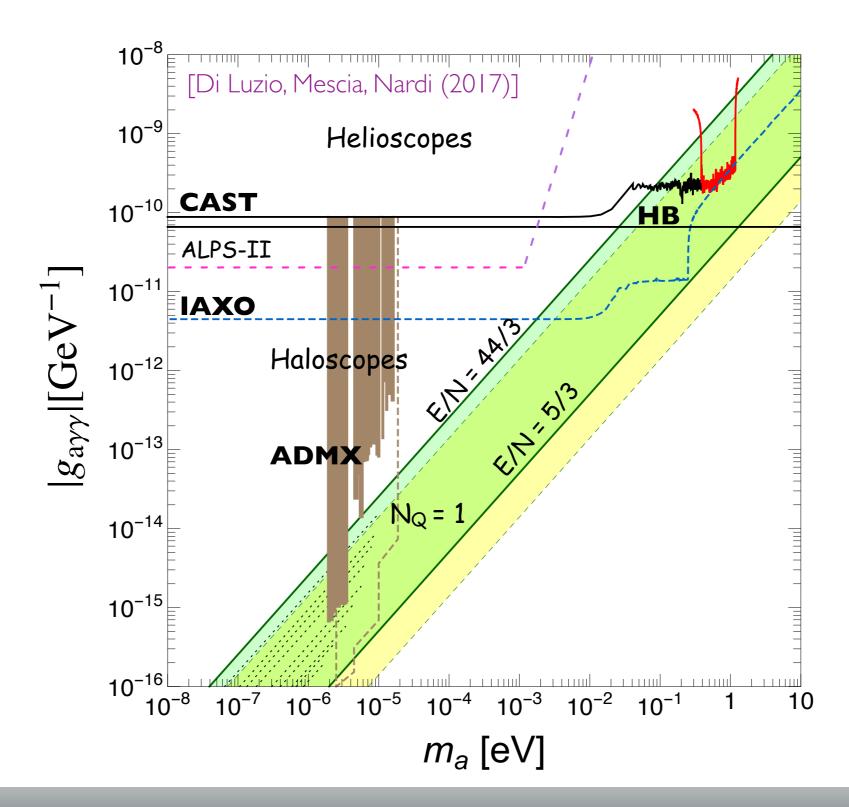
Axion-photon coupling gay: KSVZ-type

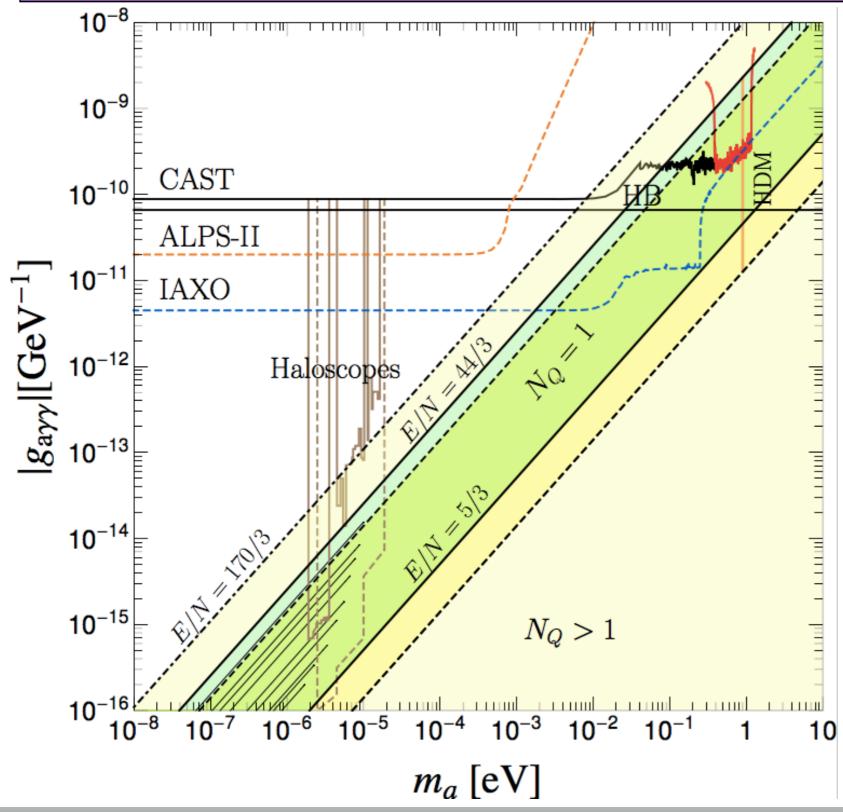


Axion-photon coupling gay: KSVZ-type

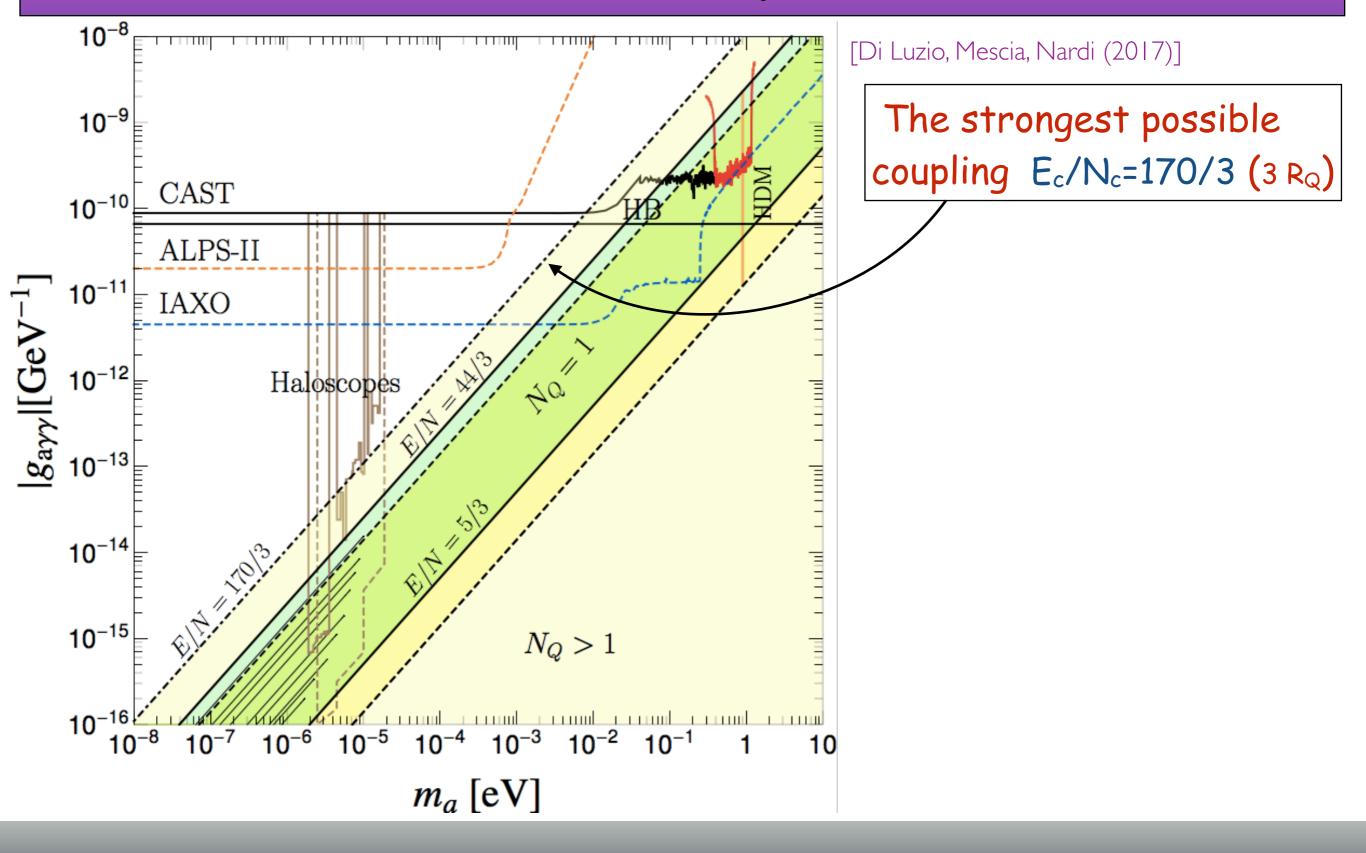


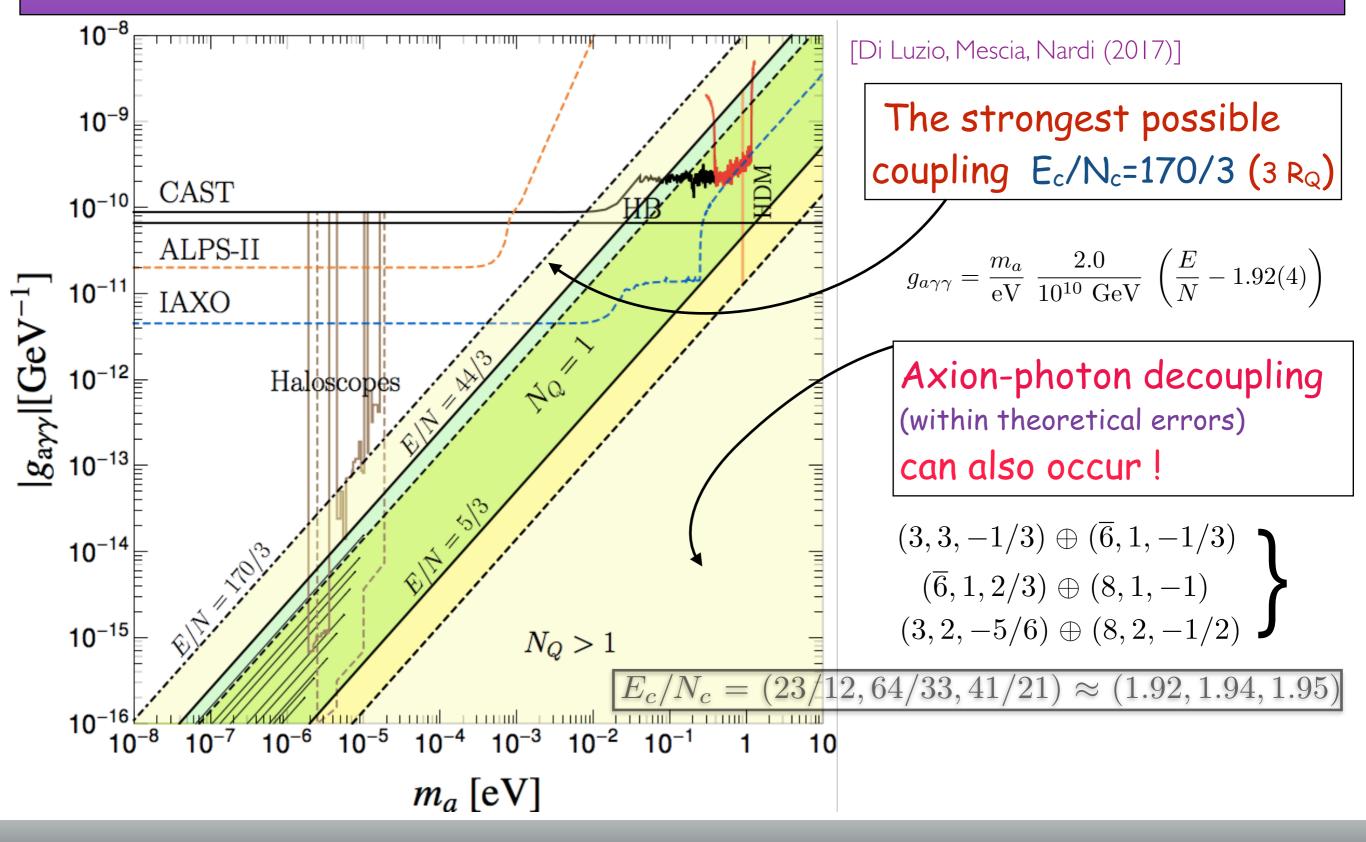
Redefining the KSVZ axion window

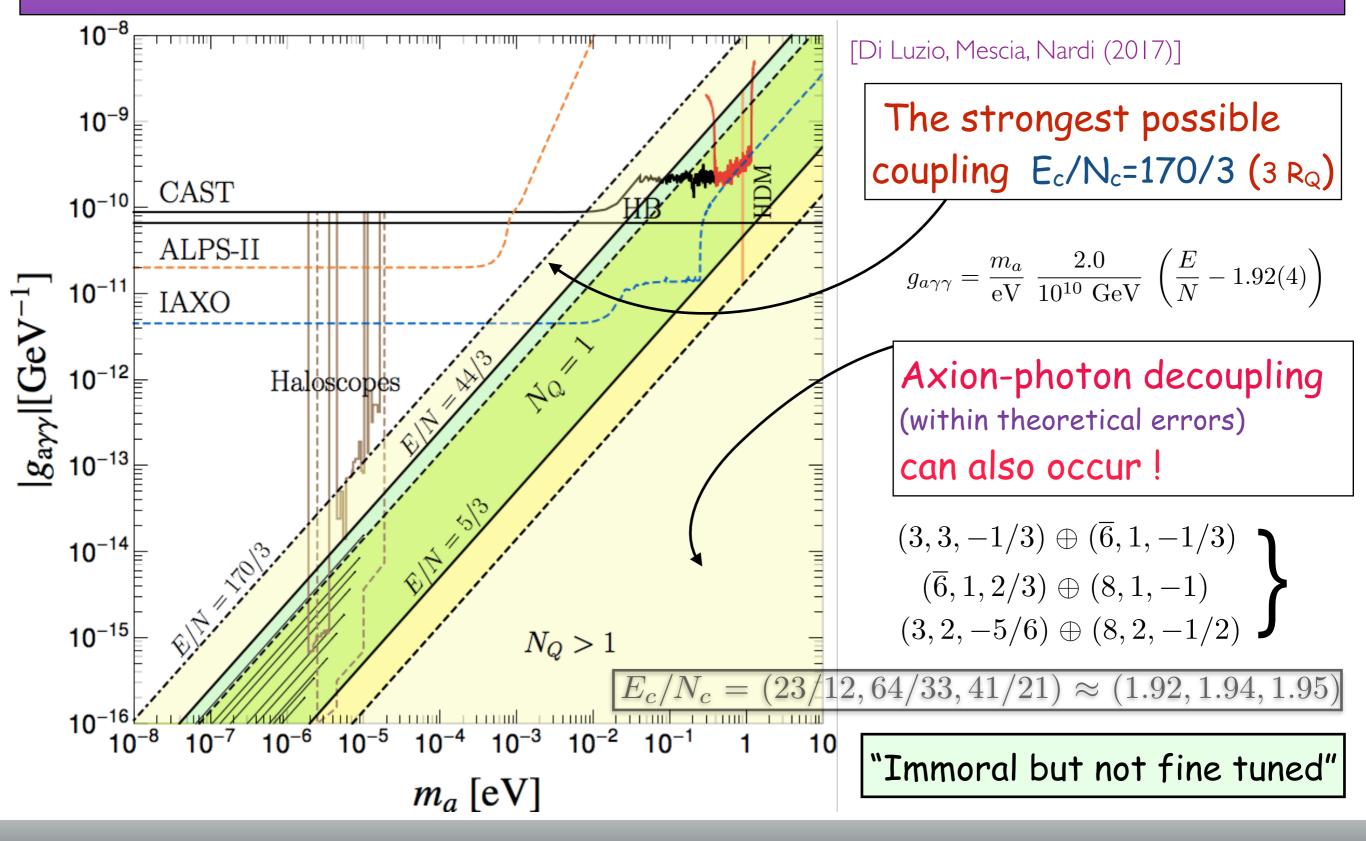




[Di Luzio, Mescia, Nardi (2017)]







Axion-photon coupling gay: DFSZ-type

DFSZ: Two (or more) Higgs doublet model plus one scalar singlet Φ

Axion-photon coupling gay: DFSZ-type

DFSZ: Two (or more) Higgs doublet model plus one scalar singlet Φ

• In general each R-handed SM fermion can have a specific PQ charge $\chi_{\rm fj}$

 $u_R^j \to \exp(iX_{uj}) u_R^j,$ $d_R^j \to \exp(iX_{dj}) d_R^j,$ $e_R^j \to \exp(iX_{ej}) e_R^j.$

$$\frac{E}{N} = \frac{2}{3} + 2\frac{\sum_{j} (X_{uj} + X_{ej})}{\sum_{j} (X_{uj} + X_{dj})}$$

Axion-photon coupling g_{ay} : DFSZ-type

DFSZ: Two (or more) Higgs doublet model plus one scalar singlet Φ

- In general each R-handed SM fermion can have a specific PQ charge $\chi_{\rm fi}$
 - $\begin{aligned} u_R^j &\to \exp\left(iX_{uj}\right) u_R^j, \\ d_R^j &\to \exp\left(iX_{dj}\right) d_R^j, \\ e_R^j &\to \exp\left(iX_{ej}\right) e_R^j. \end{aligned} \qquad \qquad \frac{E}{N} = \frac{2}{3} + 2\frac{\sum_j \left(X_{uj} + X_{ej}\right)}{\sum_j \left(X_{uj} + X_{dj}\right)} \end{aligned}$

• For generation independent charges DFSZ remains within KSVZ window: DFSZ-I: $X_e = X_d$, E/N = 8/3DFSZ-II: $X_e = -X_u$, E/N = 2/3DFSZ-III: $X_e \neq X_{u,d}$, $E/N_{(max)} = -4/3$ DFSZ-IV: N_H =9 $(E/N)_{max} = 524/3$.

Axion-photon coupling $g_{\alpha\gamma}$: DFSZ-type

DFSZ: Two (or more) Higgs doublet model plus one scalar singlet Φ

• In general each R-handed SM fermion can have a specific PQ charge χ_{fj}

$$\begin{aligned} u_R^j &\to \exp\left(iX_{uj}\right) u_R^j, \\ d_R^j &\to \exp\left(iX_{dj}\right) d_R^j, \\ e_R^j &\to \exp\left(iX_{ej}\right) e_R^j. \end{aligned} \qquad \qquad \frac{E}{N} = \frac{2}{3} + 2\frac{\sum_j \left(X_{uj} + X_{ej}\right)}{\sum_j \left(X_{uj} + X_{dj}\right)} \end{aligned}$$

For generation independent charges DFSZ remains within KSVZ window:

DFSZ-I:	$X_e = X_e$	X_d ,	E/N = 8/3
DFSZ-II :	$X_e = -$	$-X_u$,	E/N = 2/3
DFSZ-III: X _e	$\neq X_{u,d,}$	$E/N_{(m)}$	(ax) = -4/3
DFSZ-IV:	N _H =9	$(E/N)_{\rm r}$	$_{\rm max} = 524/3.$

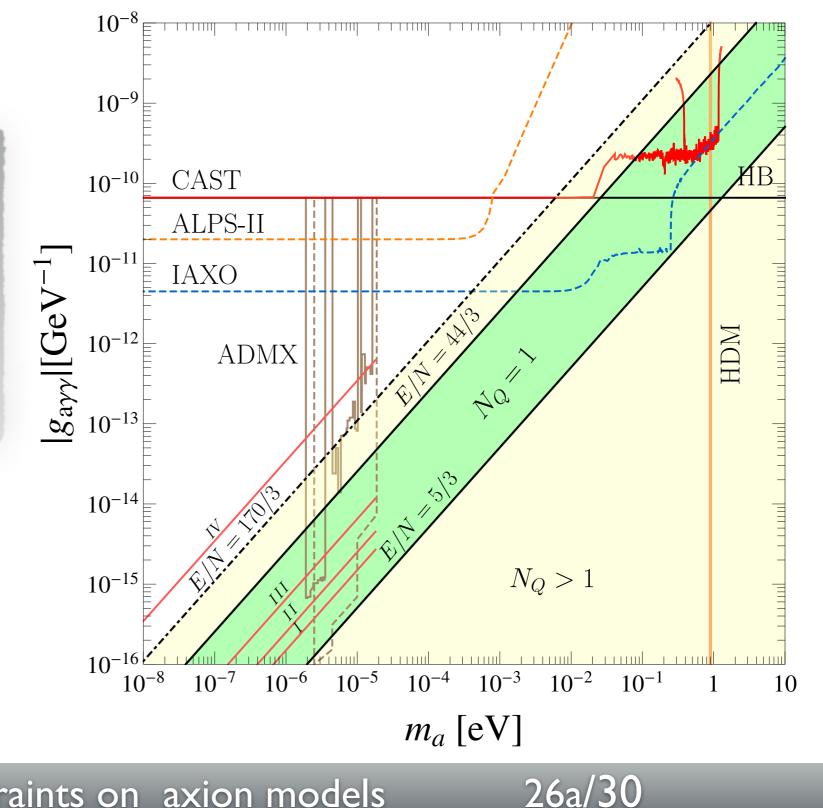
	$E/N(g_{a\gamma\gamma}^{\max})$	$E/N(g_{a\gamma\gamma}^{\min})$
KSVZ $(N_Q = 1)$	44/3	5/3
KSVZ $(N_Q > 1)$	170/3	23/12
DFSZ-I-II $(n_H = 2)$	2/3	8/3
DFSZ-III $(n_H = 3)$	-4/3	8/3
DFSZ-IV $(n_H = 9)$	524/3	23/12

For generation dependent charges (max. of 9 Higgs doublets H_{fi}):

DFSZ-IV $(X_{ej} X_{dj}, X_{uj})$: $E/N_{(max)} = 524/3 = 3 \cdot E/N_{(max)} (KSVZ)$

KSVZ/DFSZ: enlarged gay window

The region where generic KSVZ and DFSZ axion models can live:



E. Nardi (INFN-LNF) - Constraints on axion models

From the UV
$$\mathcal{L}_q = rac{\partial_\mu a}{2f_a} \, oldsymbol{c_q} \, ar{q} \gamma^\mu \gamma_5 \, q$$
 theory we have:

From the UV
theory we have:
$$\mathcal{L}_q = \frac{\partial_\mu a}{2f_a} c_q \bar{q} \gamma^\mu \gamma_5 q$$
 We want: $\mathcal{L}_N = \frac{\partial_\mu a}{2f_a} C_N \bar{N} \gamma^\mu \gamma_5 N$

From the UV theory we have: $\mathcal{L}_q = \frac{\partial_{\mu}a}{2f_a} c_q \bar{q}\gamma^{\mu}\gamma_5 q$ We want: $\mathcal{L}_N = \frac{\partial_{\mu}a}{2f_a} C_N \bar{N}\gamma^{\mu}\gamma_5 N$

 C_N in terms of c_q and of matrix elements $s^{\mu}\Delta_q = \langle N|\bar{q}\gamma^{\mu}\gamma_5 q|N\rangle$ by matching the matrix elements of \mathcal{L}_q and \mathcal{L}_N . One obtains:

(1):
$$C_p + C_n = (c_u + c_d) (\Delta_u + \Delta_d) - 2\delta_s$$
 $[\delta_s \approx O(10\%)]$
(2): $C_p - C_n = (c_u - c_d) (\Delta_u - \Delta_d)$

From the UV theory we have: $\mathcal{L}_q = \frac{\partial_{\mu}a}{2f_a} c_q \bar{q}\gamma^{\mu}\gamma_5 q$ We want: $\mathcal{L}_N = \frac{\partial_{\mu}a}{2f_a} C_N \bar{N}\gamma^{\mu}\gamma_5 N$

 C_N in terms of c_q and of matrix elements $s^{\mu}\Delta_q = \langle N|\bar{q}\gamma^{\mu}\gamma_5 q|N\rangle$ by matching the matrix elements of \mathcal{L}_q and \mathcal{L}_N . One obtains:

(1):
$$C_p + C_n = (c_u + c_d) (\Delta_u + \Delta_d) - 2\delta_s$$
 $[\delta_s \approx O(10\%)]$
(2): $C_p - C_n = (c_u - c_d) (\Delta_u - \Delta_d)$

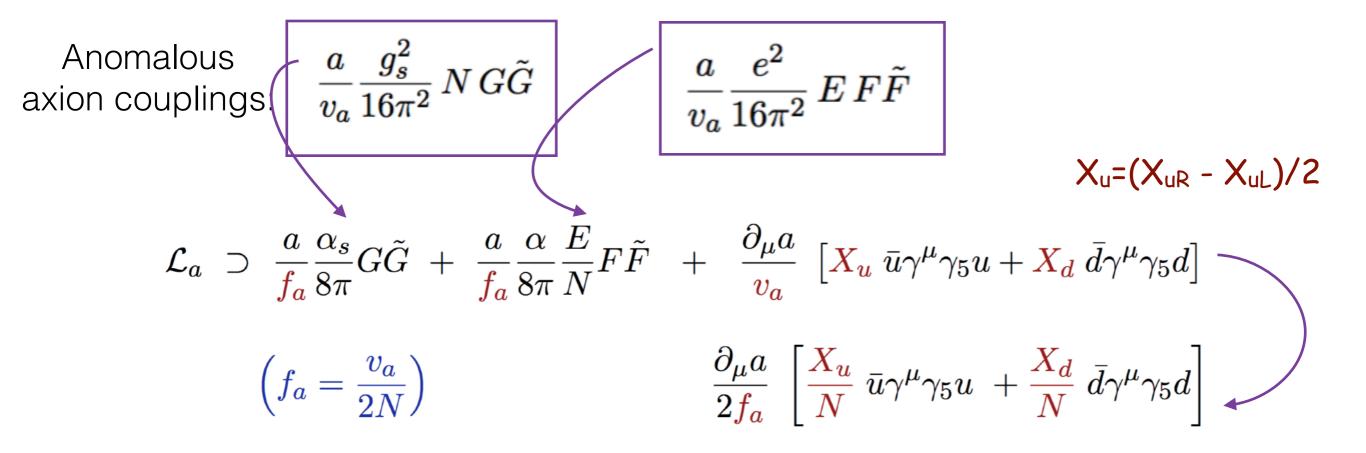
So that, independently of the matrix elements:

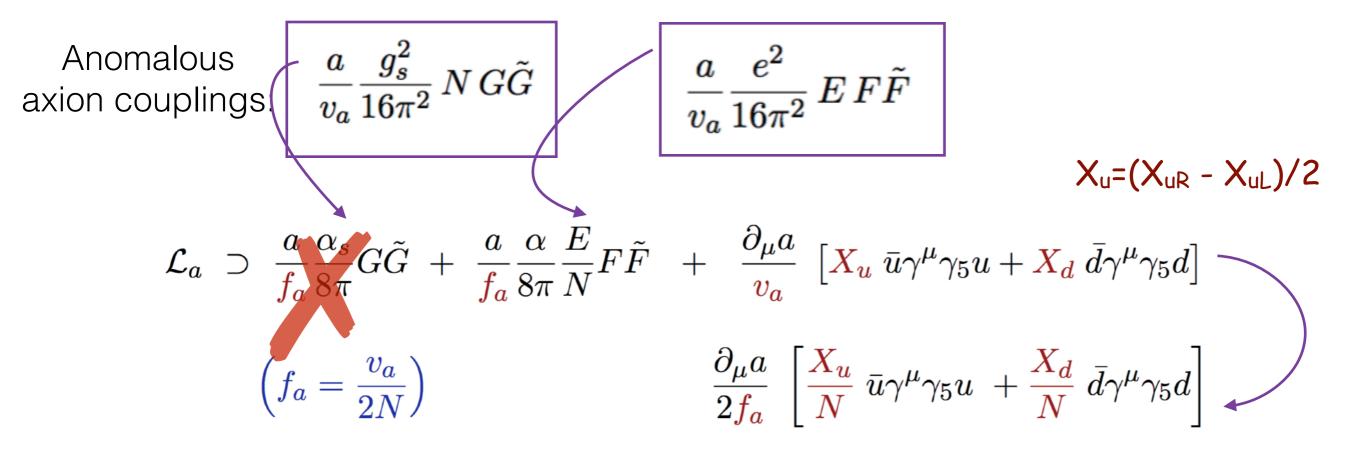
(1):
$$C_p + C_n \approx 0$$
 if $c_u + c_d = 0$
(2): $C_p - C_n = 0$ if $c_u - c_d = 0$

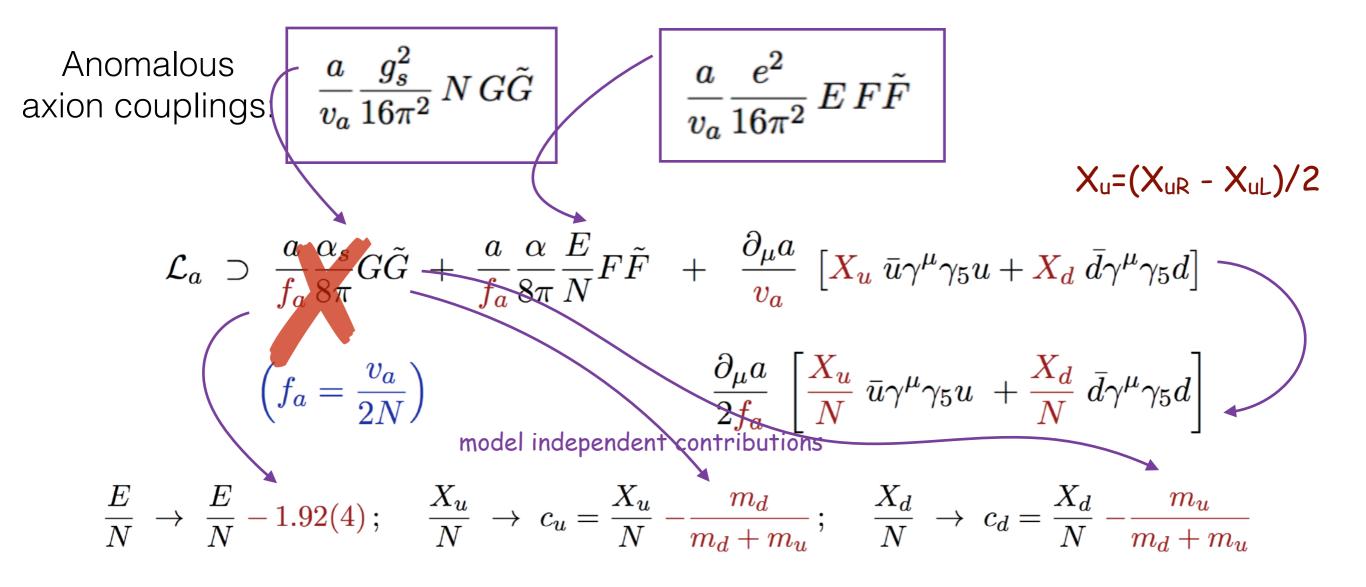
Anomalous axion couplings:

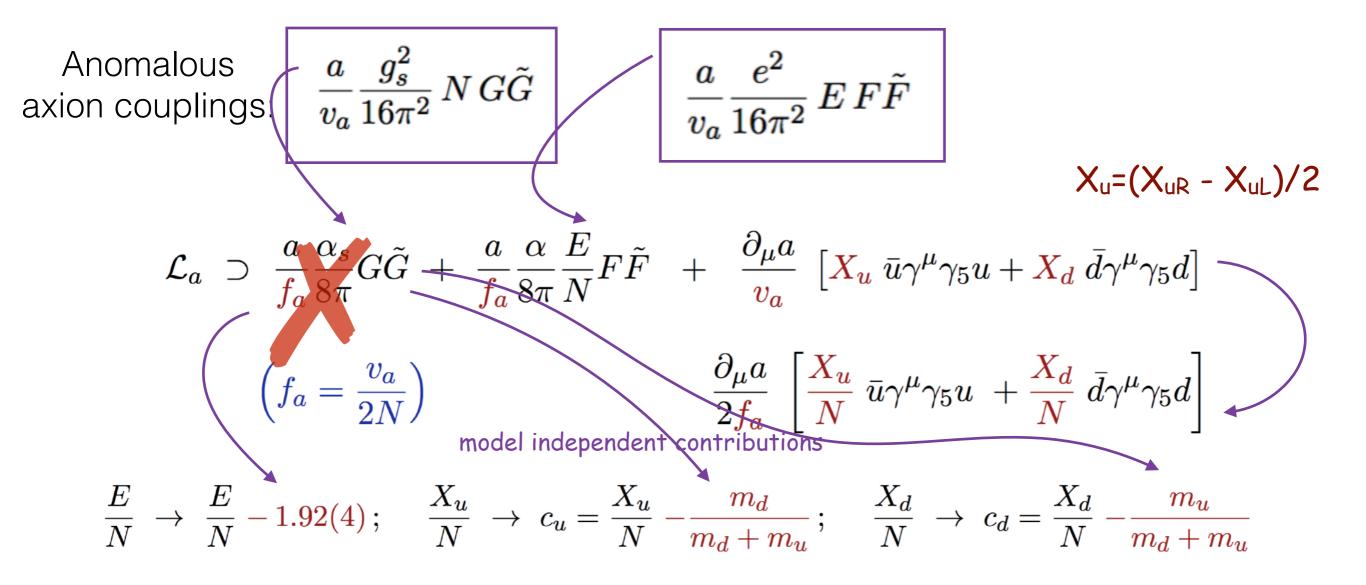
$$\frac{a}{v_a} \frac{g_s^2}{16\pi^2} \, N \, G \tilde{G}$$

$$\frac{a}{v_a} \frac{e^2}{16\pi^2} \, E \, F \tilde{F}$$

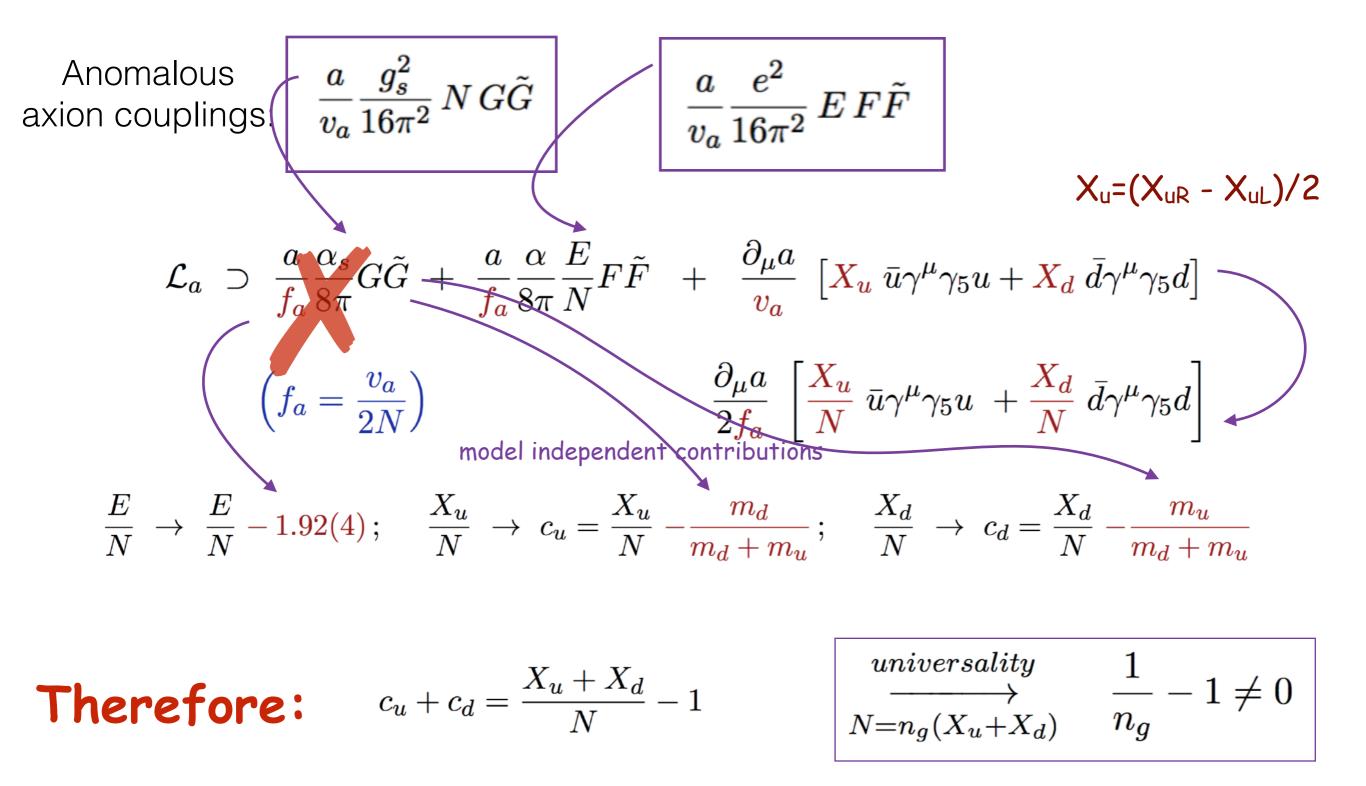








Therefore: $c_u + c_d = \frac{X_u + X_d}{N} - 1$



First conclusions from $C_u + C_d \approx 0$

First conclusions from $C_u + C_d \approx 0$

Nucleophobia unavoidably requires DFSZ-type of models with generation dependent PQ charges

such that the contribution to the anomaly from the two heavier generations vanishes: N_{tot}=N_(1stgen)

First conclusions from $C_u + C_d \approx 0$

Nucleophobia unavoidably requires DFSZ-type of models with generation dependent PQ charges

such that the contribution to the anomaly from the two heavier generations vanishes: N_{tot}=N_(1stgen)

E.g. in 1811.09637 (Bjorkeroth, Di Luzio, Mescia, EN) on U(1) flavour symmetries a number of such symmetries was serendipitously found

First conclusions from $C_{u} + C_{d} \approx 0$

Nucleophobia unavoidably requires DFSZ-type of models with generation dependent PQ charges

such that the contribution to the anomaly from the two heavier generations vanishes: N_{tot}=N_(1stgen)

E.g. in 1811.09637 (Bjorkeroth, Di Luzio, Mescia, EN) on U(1) flavour symmetries a number of such symmetries was serendipitously found

Nucleophobia is not possible for KSVZ-type of models

Scalar content of DFSZ models: H_1 , H_2 , Φ_a with VEVs v_1 , v_2 , v_a ($v_1^2 + v_2^2 = v^2$) and PQ charges X_1 , X_2 , $X_a = (X_1 - X_2)(1/2)$

Scalar content of DFSZ models: H_1 , H_2 , Φ_a with VEVs v_1 , v_2 , v_a ($v_1^2 + v_2^2 = v^2$) and PQ charges X_1 , X_2 , $X_a = (X_1 - X_2)(1/2)$

$$egin{array}{rcl} c_u-c_d&=&rac{(\mathcal{X}_{u_R}-\mathcal{X}_{u_L})-(\mathcal{X}_{d_R}-\mathcal{X}_{d_L})}{2N_\ell}-rac{m_d-m_u}{m_d+m_u}\ &=&-rac{\mathcal{X}_1+\mathcal{X}_2}{\mathcal{X}_2-\mathcal{X}_1}-igg(pproxrac{1}{3}igg) \end{array}$$

Scalar content of DFSZ models: H_1 , H_2 , Φ_a with VEVs v_1 , v_2 , v_a ($v_1^2 + v_2^2 = v^2$) and PQ charges X_1 , X_2 , $X_a = (X_1 - X_2)(1/2)$

$$egin{array}{rcl} c_u-c_d&=&rac{(\mathcal{X}_{u_R}-\mathcal{X}_{u_L})-(\mathcal{X}_{d_R}-\mathcal{X}_{d_L})}{2N_\ell}-rac{m_d-m_u}{m_d+m_u}\ &=&-rac{\mathcal{X}_1+\mathcal{X}_2}{\mathcal{X}_2-\mathcal{X}_1}-igg(pproxrac{1}{3}igg) \end{array}$$

Condition enforcing no $a-\phi_y$ mixing:

Goldstone of Hyperchage: $\phi_{Y} = (v_{2} \phi_{2} - v_{1} \phi_{1})/v$ $\sum_{i} \chi_{i} Y_{i} v_{i}^{2} = 0$

$$\Rightarrow \mathcal{X}_1 v_1^2 + \mathcal{X}_2 v_2^2 = 0$$

Scalar content of DFSZ models: H_1 , H_2 , Φ_a with VEVs v_1 , v_2 , v_a ($v_1^2 + v_2^2 = v^2$) and PQ charges X_1 , X_2 , $X_a = (X_1 - X_2)(1/2)$

$c_u - c_d$	=	$rac{\left(\mathcal{X}_{u_R}-\mathcal{X}_{u_L} ight)-\left(\mathcal{X}_{d_R}-\mathcal{X}_{d_L} ight)}{2N_\ell}$ -	$- rac{m_d - m_u}{m_d + m_u}$
	=	$-rac{\mathcal{X}_1+\mathcal{X}_2}{\mathcal{X}_2-\mathcal{X}_1}-\left(pproxrac{1}{3} ight)$	

Condition enforcing no $a-\phi_y$ mixing:

Goldstone of Hyperchage: $\varphi_{y} = (v_{2} \varphi_{2} - v_{1} \varphi_{1})/v$

$$\sum_i \mathcal{X}_i Y_i v_i^2 = 0$$

 $\Rightarrow \quad \mathcal{X}_1 v_1^2 + \mathcal{X}_2 v_2^2 = 0$

Couplings to the physical a(x) are $X_1 \propto -v_2^2/v^2 = -s_{\beta}^2$ defined in terms of the charges $X_2 \propto v_1^2/v^2 = c_{\beta}^2$

Scalar content of DFSZ models: H_1 , H_2 , Φ_a with VEVs v_1 , v_2 , v_a ($v_1^2 + v_2^2 = v^2$) and PQ charges X_1 , X_2 , $X_a = (X_1 - X_2)(1/2)$

$c_u - c_d$	=	$rac{\left(\mathcal{X}_{u_R}-\mathcal{X}_{u_L} ight)-\left(\mathcal{X}_{d_R}-\mathcal{X}_{d_L} ight)}{2N_\ell}$.	$- rac{m_d - m_u}{m_d + m_u}$
	=	$-rac{\mathcal{X}_1+\mathcal{X}_2}{\mathcal{X}_2-\mathcal{X}_1}-\left(pproxrac{1}{3} ight)$	

Condition enforcing no $a-\phi_y$ mixing:

$$\sum_i \mathcal{X}_i Y_i v_i^2 = 0$$

 $\Rightarrow \quad \mathcal{X}_1 v_1^2 + \mathcal{X}_2 v_2^2 = 0$

Couplings to the physical a(x) are $X_1 \propto -v_2^2/v^2 = -s_p^2$ defined in terms of the charges $X_2 \propto v_1^2/v^2 = c_p^2$

With $v_2^2/v_1^2 \approx 2(c_B^2 \approx 1/3) \longrightarrow X_u - X_d = X_1 + X_2 \approx -1/3$ then $C_u - C_d \approx 0$ and approximate $a - N, \pi$ decoupling $g_{aN} \approx 0$

DFSZ Electrophobia: $g_{ae} \approx 0$ ($H_{1,2} + H_{3}$)

Add a third H₃ coupled to leptons, relevant conditions:

DFSZ Electrophobia: $g_{ae} \approx 0$ ($H_{1,2} + H_{3}$)

Add a third H₃ coupled to leptons, relevant conditions:

$$\mathcal{X}_1 v_1^2 + \mathcal{X}_2 v_2^2 + \mathcal{X}_3 v_3^2 = 0$$

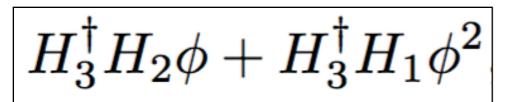
 $a-\phi_y$ decoupling condition:

DFSZ Electrophobia: $g_{ae} \approx 0$ ($H_{1,2} + H_3$)

Add a third H₃ coupled to leptons, relevant conditions:

$$\mathcal{X}_1 v_1^2 + \mathcal{X}_2 v_2^2 + \mathcal{X}_3 v_3^2 = 0$$

 $a-\phi_y$ decoupling condition:



 $\left(\mathsf{Or} H_{3}^{\dagger}H_{1}\phi + H_{3}^{\dagger}H_{2}\phi^{\dagger}, H_{3}^{\dagger}H_{1}\phi^{2} + H_{3}^{\dagger}H_{2}\phi^{\dagger 2}, \ldots\right)$

Explicit breaking of $U(1)_{H3}$ rephasing symmetry (no additional Goldstones)

DFSZ Electrophobia: $g_{ae} \approx 0$ ($H_{1,2} + H_3$)

Add a third H₃ coupled to leptons, relevant conditions:

$$\mathcal{X}_1 v_1^2 + \mathcal{X}_2 v_2^2 + \mathcal{X}_3 v_3^2 = 0$$

 $a-\phi_y$ decoupling condition:

$$H_3^{\dagger}H_2\phi + H_3^{\dagger}H_1\phi^2$$

Explicit breaking of $U(1)_{H3}$ rephasing symmetry (no additional Goldstones)

 $\left(\mathsf{Or}\,H_{3}^{\dagger}H_{1}\phi + H_{3}^{\dagger}H_{2}\phi^{\dagger}, H_{3}^{\dagger}H_{1}\phi^{2} + H_{3}^{\dagger}H_{2}\phi^{\dagger 2}, \ldots\right)$

$$C_u - C_d = rac{\mathcal{X}_1 + \mathcal{X}_2}{\mathcal{X}_1 - \mathcal{X}_2} = rac{m_d - m_u}{m_d + m_u}$$

2nd Nucleophobia condition

DFSZ Electrophobia: $g_{ae} \approx 0$ ($H_{1,2} + H_{3}$)

Add a third H₃ coupled to leptons, relevant conditions:

$$\mathcal{X}_1 v_1^2 + \mathcal{X}_2 v_2^2 + \mathcal{X}_3 v_3^2 = 0$$

 $a-\phi_y$ decoupling condition:

$$H_3^{\dagger}H_2\phi + H_3^{\dagger}H_1\phi^2$$

 $\left(\mathsf{Or} H_{3}^{\dagger} H_{1} \phi + H_{3}^{\dagger} H_{2} \phi^{\dagger} H_{3}^{\dagger} H_{1} \phi^{2} + H_{3}^{\dagger} H_{2} \phi^{\dagger 2} \dots \right)$

Explicit breaking of $U(1)_{H3}$ rephasing symmetry (no additional Goldstones)

$$C_u - C_d = rac{\mathcal{X}_1 + \mathcal{X}_2}{\mathcal{X}_1 - \mathcal{X}_2} = rac{m_d - m_u}{m_d + m_u}$$

2nd Nucleophobia condition

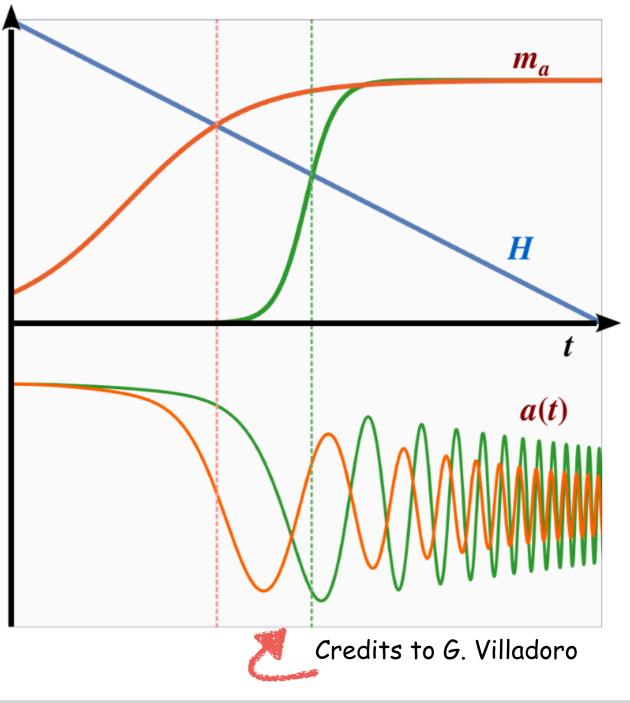
Lepton-axiondecoupling: $\mathcal{X}_3 \approx 0$

occurs for specific values $m_d/m_u \approx 2$, 1, 1/2 with no additional tuning required

$$\rho_a = m_a^2 a^2$$

Evaluated from integrating:

$$\ddot{a} + 3H\dot{a} + m_a^2(T)f_a \sin\left(\frac{a}{f_a}\right) = 0$$

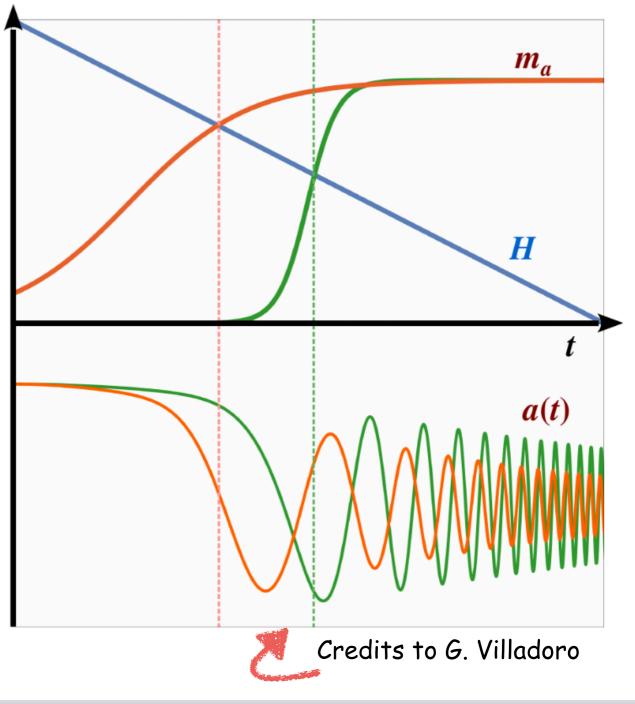


$$\rho_a = m_a^2 a^2$$

Evaluated from integrating:

(1) boundary conditions: $a_i = \theta_i f_a; (da/dt)_i=0;$ $f_a \ge H_I, H_I \gg \Lambda_{QCD}$

$$\ddot{a} + 3H\dot{a} + m_a^2(T)f_a \sin\left(\frac{a}{f_a}\right) = 0$$

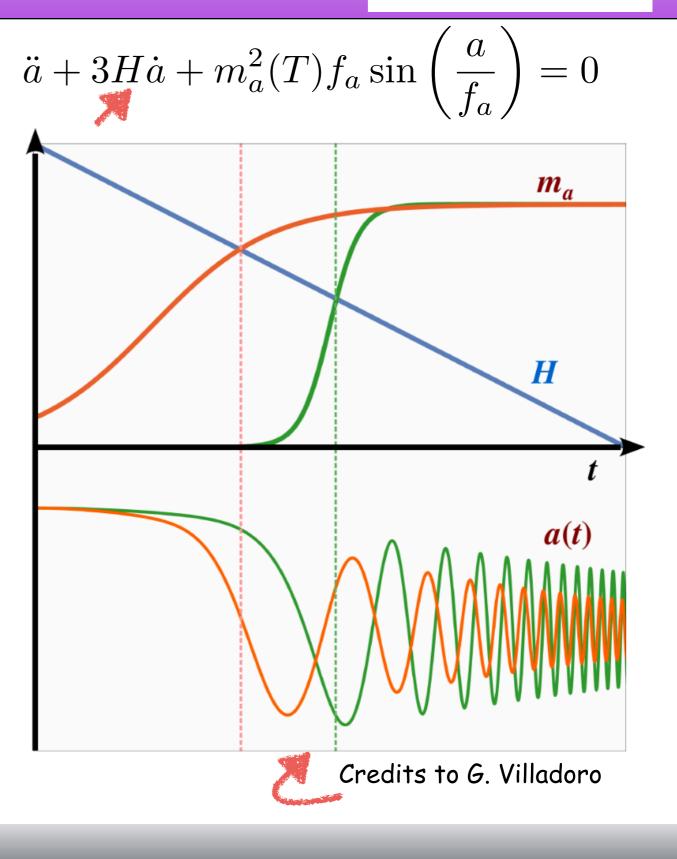


$$\rho_a = m_a^2 a^2$$

Evaluated from integrating:

(1) boundary conditions: $a_i = \theta_i f_a; \quad (da/dt)_i=0;$ $f_a \ge H_I, \quad H_I \gg \Lambda_{QCD}$

(2) $H(T) = 1.66 T^2/M_P$ (eq. st.: $w_{eff} = 1/3$, rad.dom.)



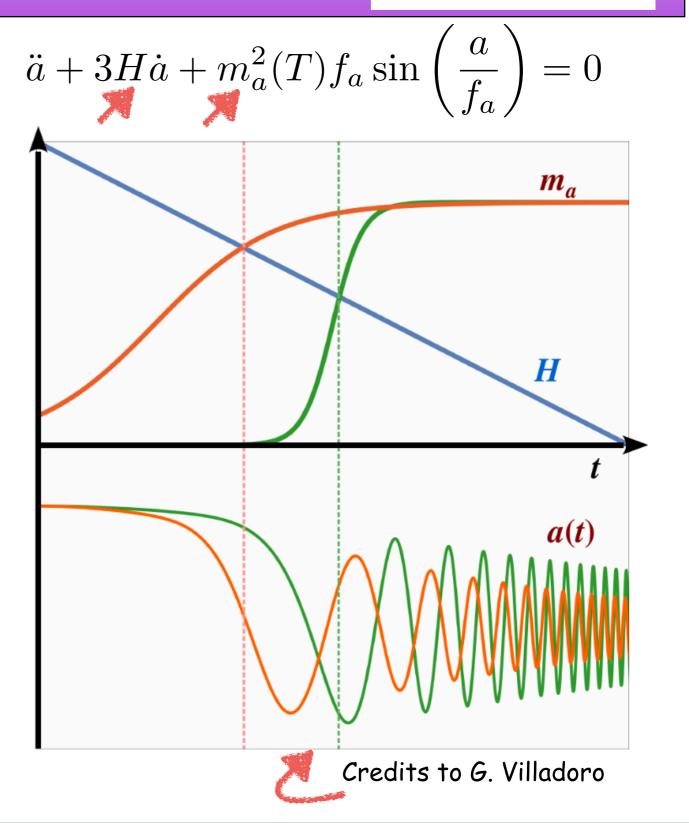
$$\rho_a = m_a^2 a^2$$

Evaluated from integrating:

(1) boundary conditions: $a_i = \theta_i f_a; \quad (da/dt)_i=0;$ $f_a \ge H_I, \quad H_I \gg \Lambda_{QCD}$

(2) $H(T) = 1.66 T^2/M_P$ (eq. st.: $w_{eff} = 1/3$, rad.dom.)

(3) $m_a^2(T) = m_a^2 \chi(T)/\chi$ ($\chi = QCD$ topological suscept.) with $m_a \sim m_\pi f_\pi/f_a$



$$\rho_a = m_a^2 a^2$$

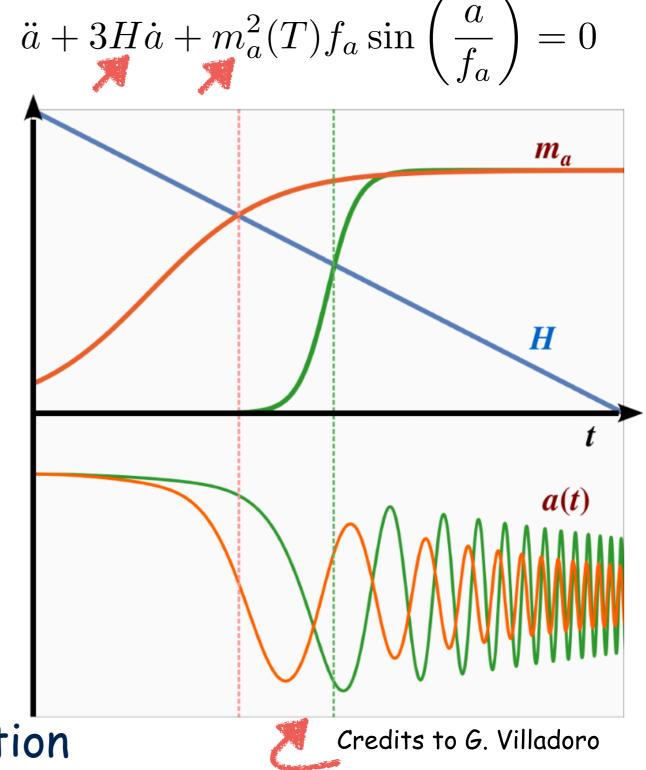
Evaluated from integrating:

(1) boundary conditions: $a_i = \theta_i f_a; \quad (da/dt)_i=0;$ $f_a \ge H_I, \quad H_I \gg \Lambda_{QCD}$

(2) $H(T) = 1.66 T^2/M_P$ (eq. st.: $w_{eff} = 1/3$, rad.dom.)

(3) $m_a^2(T) = m_a^2 \chi(T)/\chi$ ($\chi = QCD$ topological suscept.) with $m_a \sim m_\pi f_\pi/f_a$

(4) assumed entropy conservation



• Θ_i : Long lasting, low scale inflation.

[P.W. Graham, A. Scherlis 1805.07362, F.Takahashi, W.Yin, A. H.Guth 1805.08763]

$$H_{I} \lesssim \Lambda_{QCD}, \ \theta_{i} \rightarrow \ll 1, \ m_{a} \sim 10^{-12} \text{ eV}$$

• Θ_i : Long lasting, low scale inflation.

[P.W. Graham, A. Scherlis 1805.07362, F.Takahashi, W.Yin, A. H.Guth 1805.08763]

$$H_{I} \lesssim \Lambda_{QCD}, \ \theta_{i} \longrightarrow \ll 1, \ m_{a} \sim 10^{-12} \text{ eV}$$

• H(T): GR + non standard thermal history

- Entropy generation T < T_{osc} : $m_a \approx (5-50) \, \mu eV/\Delta^{7/6}$

- ψ -domination, with $W_{\psi} \neq 1/3$: easy to arrange $m_a \ll 1 \mu eV$

[N. Ramberg, L. Visinelli, 1904. 05707]

• Θ_i : Long lasting, low scale inflation.

[P.W. Graham, A. Scherlis 1805.07362, F.Takahashi, W.Yin, A. H.Guth 1805.08763]

$$H_{I} \lesssim \Lambda_{QCD}, \ \theta_{i} \longrightarrow \ll 1, \ m_{a} \sim 10^{-12} \text{ eV}$$

• H(T): GR + non standard thermal history

- Entropy generation T < T_{osc} : $m_a \approx (5-50) \, \mu e V / \Delta^{7/6}$

- ψ -domination, with $W_{\psi} \neq 1/3$: easy to arrange $m_a \ll 1 \mu eV$

[N. Ramberg, L. Visinelli, 1904. 05707]

Beyond GR: [work in progress]

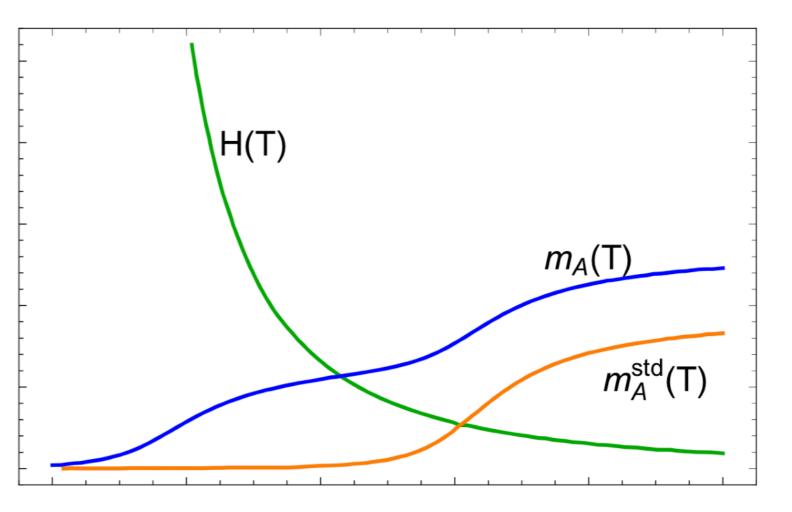
- Scalar-tensor theories:

(conformal) boosted $H(T): m_a \uparrow$ (disformal?) quenched $H(T): m_a \downarrow$

- Modify m_a(T):
- Additional contributions from mirror instantons: (earlier onset of oscillations)

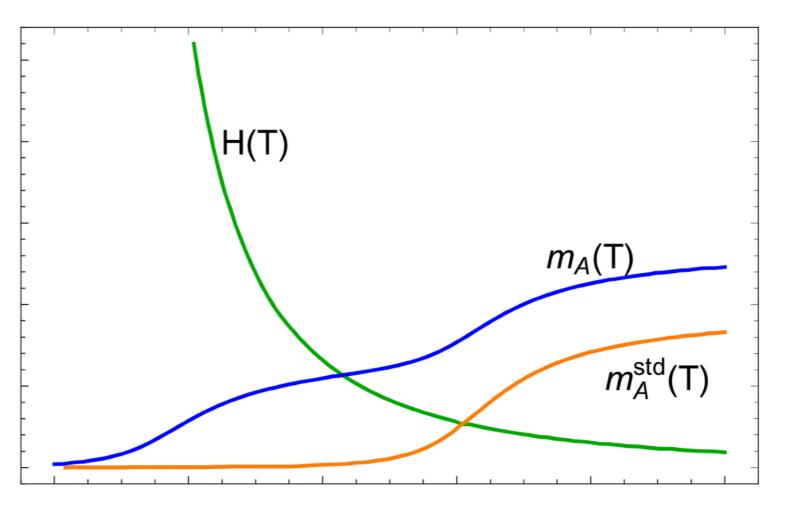
ma ↓ [Giannotti, astro-ph/0504636]

[For m_a f see P. Quilez talk]



• Modify $m_a(T)$: Additional contributions from mirror instantons: (earlier onset of oscillations) $m_a \downarrow$ [Giannotti, astro-ph/0504636]

[For m_a f see P. Quilez talk]



• Modify m_a : N copies of QCD related by a \mathbb{Z}_N symmetry $m_a(N) = 2^{2-N/2} \times m_a$, for N > 4 $m_a \downarrow$

• A certain number of quasi-model-independent features characterise axion models. Hard to circumvent, but possible.

- A certain number of quasi-model-independent features characterise axion models. Hard to circumvent, but possible.
- From any measurement we learn something: some scenarios can be ruled out, viable hypothesis can become no more viable, etc. Experimental results reaching into non-canonical regions are equally important for this learning process.

- A certain number of quasi-model-independent features characterise axion models. Hard to circumvent, but possible.
- From any measurement we learn something: some scenarios can be ruled out, viable hypothesis can become no more viable, etc. Experimental results reaching into non-canonical regions are equally important for this learning process.
- Working group to classify axion models off the beaten tracks (M. Giannotti, L. Di Luzio, EN, L. Visinelli). Full report to be expected after the summer.

Thanks for your attention