

Recent results from Dark Matter searches with EDELWEISS PATRAS, Freiburg 3.-7.06.2019

Bernhard Siebenborn on behalf of the EDELWEISS collaboration

WIMPs as Dark Matter

- Rotation curves of galaxies \rightarrow DM halo
- Assume DM particle candidate: WIMP
 - gravitation
 - additional "weak" interactions
- WIMP-nucleus scattering in detector
- Kinematics \rightarrow keV-scale recoils
- Potential for WIMP discovery in a detector via combination of
 - heat
 - Ionization
 - scintillation
- Unknown parameters:
 - cross section (SI / SD)
 - WIMP mass

Vrot (km/s)

credit to Illustris Collaboration

EDELWEISS collaboration

University of Oxford University of Sheffield

EDELWEISS-III setup

- Laboratory: LSM, ~4800 m.w.e. rock overburden (deepest in Europe) \rightarrow 5 µ/m²/d
- Active muon veto + PE + Pb shield
- Clean room, de-radonised air → 10-20 mBq/m³
- Cryostat hosting up to 40 kg of detectors at 18 mK
- Selection of radio pure material

Performance of the EDELWEISS-III experiment for direct dark matter searches JINST 12 (2017) P08010

EDELWEISS-III detectors

- ~870 g mono-crystal high purity Ge detectors
- 2 heat sensors per detector (GeNTDs)
- Electrodes: Al rings covering all faces

Clear **event-by-event** separation down to ~ keV energy (nuclear recoils)

Axion-like particle searches (e⁻ recoils)

- Starting point: study of **electron recoil spectrum** of cosm. activ.
 - Threshold: 0.8 keV_{ee} to 2 keV_{ee}

- Astropart. Phys. 91 (2017) 51
- low background thanks to surface rejection
- Analysis extended to higher energy for line search up to 500 keV_{ee}
- Intensities of observed peaks consistent with known Th/U lines
- Baseline resolution: 193 eV_{ee}

E. Armengaud et al., Phys. Rev. D 98, 082004 (2018)

250

Institut für Kernphysik

Bernhard Siebenborn - EDELWEISS dark matter search

ALP and dark photon results (e⁻ recoils)

from EDELWEISS-III to SubGeV masses

Complete study based on present measured backgrounds and resolutions vs possible improvements:

EDELWEISS-III legacy

- Excellent performance of ER- and surface rejection
- Ionization resolution is essential for rejection of backgrounds
- Heat resolution and exposure is limited by cryogenic noise

the future:

Progressing towards 1 GeV/c² and 10⁻⁴³ cm² with event-by-event discrim. **Requires new detector generation with improved** σ_{phonon} and σ_{ion}

FWHM_{heat} (keV_{ee})

NL-boost with EDELWEISS detectors

 $\rightarrow E_{NL} = \frac{E_{ion}}{\varepsilon} \cdot V_{bias}$

100 V on detector already achieved \checkmark

observe nuclear recoils down to $\sim 0.1 \text{ keV}_{ee}$ \checkmark

1 1 1 1 1 1 1 +

Luke boost = 1 + V/3

full ion.+heat readout possible at any V \checkmark

Prompt phonons

NL amplified

phonons

Charge propagation

EDELWEISS R&D at surface

- above ground lab: overburden < 1 m</p>
- dry cryostat (Cryoconcept)
- vibration mitigation: suspended detector
- smaller Ge detectors: m_{Ge} = 33.4 g
- phonon sensor: Ge-NTD
- Iow energy calibration:
 - ⁵⁵Fe x-ray source
 - neutron activation of Ge

Resolution improvements on a 32g HPGe

- R&D with 32g HPGe combined with the objective of testing the above-ground sensitivity to sub-GeV WIMPs
- optimized NTD heat sensor on a 32 g crystal, no electrodes (i.e. 1 keV = 1 keV_{NR})

J. Billard et al., JLTP(2016)184:299

- kept at 17 mK in IPNL low-vibration dilution fridge <u>JINST (2018)13T08009</u>
- one day blinded for WIMP search in [0-2] keV region
- 60eV analysis threshold

Unblinding the data

No surprise:

blinded day = carbon copy of preceding + following days

Find maximal WIMP rate compatible with total number of counts observed in the pre-defined windows \rightarrow 90% CL on WIMP signals as function of WIMP mass

EDELWEISS surface results

Best surface limit down to 600 MeV/c²: SIMP

First sub-GeV limit with Ge, down to 500 MeV/c²

Achieved resolution on a smaller detector exceeds by x5 the original goal with 800 g detectors

Small detectors with lower thresholds to be combined with expertise acquired on HV: threshold reduction by factor $(1+V_{bias}/3)$ in keV_{ee}

EDELWEISS R&D: heat sensors

NbSi transition edge sensor

Institut für Kernphysik

23.0

24.0

 25.0×10^{-3}

21.0

22.0

TES NbSi meandre Wafer M17 @ 100pA

sensor 5

sensor 13 sensor 10

sensor 9

Bernhard Siebenborn - EDELWEISS dark matter search

EDELWEISS R&D: ionization readout, HEMT

development of HEMT based pre-amplifiers
amplification at 4 K stage of cryostat
→ shorter cabling → reduced impedance
→ better signal / noise

modified electrode configuration spacing: 2 mm → 4 mm less capacitance (heat + electric)

targeting 50 eV_{ee} (RMS) possible with 50-80 pF effective capacitance

20 eV_{ee} (RMS) possible with ~20 pF readout channel → requires cryostat upgrade

Currently ongoing EDELWEISS run in LSM

Calibration : KLM ⁷¹Ge from neutron activation 3.7 GBq AmBe source (~2x10⁵ neutrons)

NbSi 209 200g Ge TES sensor

Conclusions

- An 18 eV phonon energy resolution and the possibility to apply analysis energy threshold of 60 eV have been achieved thanks to the coupling of the NTD-Ge thermal sensor to the detector and the excellent noise environment of the facility
- First sub-GeV spin-independent dark matter limit based on a germanium target, and the most stringent, nuclear recoil based, above-ground limit on spin-independent interactions above 600 MeV/c² for the EDELWEISS collaboration

- Interpretation of the DM search results in the context of Strongly Interacting Massive Particles (SIMPs) with exclusion of new regions of the available parameter space in consideration of Earth-shielding effects
- Considering the Migdal effect, extension of the DM search to lower masses and first exclusion of particles with masses between 45 150 MeV/c² with cross sections from 10⁻²⁹ to 10⁻²⁶ cm²

Outlook: Ge detector technology

Karlsruhe Institute of Technology

Backup 1:

