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QCDAxion Structure Formation

> Axion DM forms a
degenerate Bose fluid at
low masses (ma ≲ 1 eV)

> Mean Field Theory of
axion DM produces a
Gross-Pitaevskii model of
axion infall

> What are the
contributions of
inter-axion correlations?

(Super-de Broglie structure in super-fluid sodium with
vortices, credit: Martin Zwierlein)
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QuantumMechanical Axions

> Self-gravity dominates during significant structure
formation.

> Quantum mechanics is a sufficient description for
the relic axion fluid during this time.
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Exchange and the Correlated Hamiltonian

> Schrödinger equation uses Hamiltonian with
Coulombic inter-axion gravity

> Inherits exchange symmetry

H = −
N∑
i

ℏ2∇2
i

2a2m
−

N∑
i<j

Gm2

|⃗xi − x⃗j|
,

PijΨ = Ψ
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Inter-Axion Potential

MBQM G-P Eqn.

~ 
G

m
2 /r

~ GM2/R
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Exchange-Correlation of Axions

> Inter-axion
gravitation and
exchange can create
highly-correlated
condensates.

> Super-de Broglie
dynamics contain
exchange-
correlation (XC)
contributions:
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(Correlation in sample systems of identical bosons and fermions,
parameterized by distribution value.)

Lentz, Quinn, Rosenberg, 2019, MNRAS, 485, 1809L (arXiv:1810.09226)
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Isolated Collapse

> N-body algorithm tracks
elements of the total
density

> Initial conditions are
spherical, cold with
parameters of
+ Shape ∈

{Top-hat,Gaussian}
+ C ∈ [0.5, 1.0]
+ Solid-body spin
(λ ∈ [0.0, 0.1])

(Hahn et al. 2016)
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)
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Structure in Space

Isolated halo densities are largely similar to
classical collapse
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(Radial density profiles of N-Body spherical collapse simulations.)
Lentz, Quinn, Rosenberg, arXiv:1904.06948
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Augmented Force

Shape insensitivity is unexpected in light of the
forces involved
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(Circular rotation curves of N-Body spherical collapse simulations.)
Lentz, Quinn, Rosenberg, arXiv:1904.06948
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Velocity Structure

Though the force does alter the velocities
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(Spherical velocity dispersion profiles of N-Body spherical collapse simulations.)
Lentz, Quinn, Rosenberg, arXiv:1904.06948
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Velocity Substructure

And the velocity distributions, and possibly the
orbits of halo substructures (eg. bound dwarf
galaxies)
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(Inner-halo fractional speed distributions in N-Body spherical collapse simulations.)
Lentz, Quinn, Rosenberg, arXiv:1904.06948 11



Orbital Actions: SurfaceMixing

Mixing across the virial radius may be the result of
quasi-particle action

Bose (C = 0.5, λ = 0.05) Classical (C = 1.0, λ = 0.05)
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(Co-rotating angular momentum over mean orbital radius in N-Body spherical collapse simulations.)
(Speed vs. Newtonian potential for Top-Hat N-Body spherical collapse simulations at C = 0.5 and C = 1.0

respectively.)
Lentz, Quinn, Rosenberg, arXiv:1904.06948
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Orbital Actions: Resonances

Finer structures begin coming into focus via
resonances

Bose (C = 0.5, λ = 0.05) Classical (C = 1.0, λ = 0.05)
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(Radial orbit actions versus mean orbit radius in Gaussian N-Body spherical collapse simulations at C = 0.5
and C = 1.0 respectively.)
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Signal Shape for Axion Search

A first look at the signal a Sikivie process axion
search would expect to see.
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(Co-moving local energy distributions from Gaussian N-Body Spherical collapse simulations.)
Lentz, Quinn, Rosenberg, arXiv:1904.06948
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Summary

> Exchange-correlation has a significant impact on
the physics of highly-degenerate and correlated
fluids such as axion dark matter

> Several new structures are already seen in simple
isolated collapse

> New structures produce new observables for
axion searches

> Larger simulations and deeper insight into
condensation to be coming soon!
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