3D effects in dielectric haloscopes and dish antennas
Jan Schutte-Engel, University Hamburg

iti
2 ¥ Universitait Hamburg
DER FORSCHUNG | DER LEHRE | DER BILDUNG

The precise estimate of axion haloscopes sensitivity requires the calculation of the 3D E-fields We consider a dielectric haloscope with 20 dielectric
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in axion electrodynamics. Full 3D finite element method (FEM) solutions for large setups are k\erro_TrHHT_T_ dISC.:S (e 24 and thickness 1 mm). The disk
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computationally expensive. We present and compare two effective methods [1] to elude a full (U > " . ; |
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for a dish antenna and a dielectric haloscope [2]. Our two effective methods are furthermore
used to quantify the effects of diffraction and disk tilt tolerances in dielectric haloscopes.

Optimizing the disk positions gives a large power

- - - . il [ | enhancement in a certain frequency interval.
Axion-Maxwell equations and solution techniques 20 dielectric disks Distance of the disks around A/2. Study motivated

by MADMAX prototype booster (18 — 25 GHz)

First order axion-Maxwell equations [1] in the axion photon coupling g, for E-field: Beam shapes and power boost:
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Radial symmetric geometry — reduce the problem by one dimension, even though external 2D3D and Fourier propagation agree (near-fields xtem o
E ,-field / external B-field is linear polarized. Decompose: ne.gllglble) | 2 =15 cm A~ 1.6 cm.
Exlp,2) = EF(py 6 2) + E; (9, 6, 2), 2) Axion velocity effects
with m = +1 :
~m . isks, g = = Axion Velocity [c]
EM — Emelmcb — Ea(p’ Z)(ép + imé¢)e’m¢. (3) 20000 1 20 disks, #=30cm , £=24 ([;(a:?glleletcc))cclji);kg)
a d 1D : ~
Solve 2 17500 - 3D ideal » Quality factor Q number of
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Axion induced field E; leads to propagating fields from interfaces with different refractive index 5500 4 » CDM velocities parallel to the
n due to interface conditions for E and B-fields. Describe the emitted radiation with a scalar 0l | | | | | | | disks smaller than 103 do
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w2 (27) Disk tilt effects:
JF is two dimensional Fourier transformation. Apply propagation recursively.
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Radiating field shape of circular dish antenna:

80 disk dielectric haloscope

B » Field patterns can be analytically described with Kirchhoff diffraction We consider a dielectric haloscope with 80 dielectric discs (€ = 24 and thickness 1 mm). The
theory plus a line boundary charge o; ~ sin @ and a line current density disk radius is R = 0.5 m. The values are currently aimed at by MADMAX.
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Axion velocity effects in rectangular dish antenna: =041 BN coupling | C|? significantly.
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)Y Diffraction theory by Kirchhoff and Rayleigh:
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_ Ec — EaeikB'X < E-field at the surface S of the dish antenna. » 3D E-fields for open axion haloscop.es are necessary for precise sensitivity prediction.
_ T, : - - » Two methods are developed and validated. 3D effects can change the 1D results.
X D = |x — x’|, n” normal vector. Applicable if A < min(a, b).
; . KB . _ kK o 103 In the far field: » CDM velocity effects are computed: negligible for 20 disk dielectric haloscopes / shift of
S ana = Rvotanf =52 vy 3 - [ the Tar nield: diffraction maximum in dish antenna
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a‘ K 7 E(x) N sinc(EX )sinc(@X ) » Sensitivity for dielectric haloscopes is quantified with 3D fields:
\ ‘ E., 2 " 2 > Diffraction losses are around 10% — 20% with respect to 1D calculations.
Xx = Vs — X Xy = v, — Yy > Losses due to the coupling to antenna are around 10% — 20%.
8 A A Yz > Disk tilts < 0.1 mrad are acceptable.
E(x,y) at distance z Shift of the diffraction maximum at distance z :
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