Gravitational imprints of monodromic axions

Jürgen Berges, <u>Aleksandr Chatrchyan</u>, Joerg Jaeckel Institute for Theoretical Physics, Heidelberg University, Germany Based on: arxiv:1903.03116, in preparation

Axion-like particles (ALPs) and monodromy

Standard ALPs: pseudo-Goldstone bosons, string axions

enjoy a discrete shift symmetry, $\varphi \rightarrow \varphi + 2\pi f$.

If the **discrete shift symmetry is broken**, ALP exhibits a **monodromy** [1].

For string axions, monodromy can be induced by the presence of wrapped branes, fluxes etc.

The shape of the potential $U(\varphi)$ for standard (left) and monodromic (right) ALPs.

SEIT 1386

Misalignment production: Growth of fluctuations

Production of gravity waves

Parametric resonance and subsequent non-linear dynamics generate a stochastic gravitational wave (GW) background.

ALPs can behave as dark matter if produced via the misalignment mechanism.

Equations of motion:
$$\ddot{\varphi} + 3H\dot{\varphi} - \frac{\Delta\varphi}{a^2} + m^2\varphi + \frac{\Lambda^4}{f}\sin\frac{\varphi}{f} = 0.$$

Symmetry breaking part Periodic part

For large misalignment angles ϕ_1/f , self-interactions can play a role [2].

Oscillations start in a radiation-dominated universe, at $H_{\rm osc} \approx \frac{m_a}{2}$.

Parametric resonance instability *Amplification of fluctuations*

Fragmentation of the (homogeneous) background field

As the ALP densitiv decreases, the interaction rates drop

The spectrum freezes

Axion miniclusters? Gravity versus pressure

Growth of fluctuations \longrightarrow ALPs can have O(1) over-densities.

Characterized by the **density contrast power spectrum**:

The **frequency** of the signal is determined by the **mass**, $\nu = 3.2 \times 10^{-3} \text{Hz} \, \eta \, \sqrt{\frac{m}{\text{eV}}} \left(g_{s,\text{emit}}^{1/3} g_{\text{emit}}^{1/4} \right)^{-1}.$ The strength of the signal i.e. the **energy fraction**, $\Omega_{\rm GW,today}(\nu) = \frac{1}{\rho_{\rm c}(t_{\rm today})} \frac{d\rho_{\rm GW}(t_{\rm today})}{d\ln(\nu)} = 2 \times 10^{-4} g_{\rm emit}^{-1/3} \,\Omega_{\rm GW,emit}(\nu).$ is determined by the **misalignment field value** ϕ_1 , $\Omega_{\rm emit} = \frac{\rho_{\rm GW}(t_{\rm emit})}{\rho_c(t_{\rm emit})} \xrightarrow{\qquad} \propto \frac{\rho_{\phi}^2(t_{\rm osc})}{p^2} \xrightarrow{\qquad} \Omega_{\rm GW} \propto \phi_1^4.$ Do not over-produce dark matter: $\sqrt{\frac{m_a}{\text{eV}}} \left(\frac{\phi_1}{10^{11} \text{GeV}}\right)^2 < 10^2$. GW spectra from lattice simulation, using a modified version of HLATTICE [4] code, $\ddot{h}_{ij} + 3H\dot{h}_{ij} - \frac{\Delta h_{ij}}{a^2(t)} = \frac{16\pi}{M_{\rm Pl}^2}\Pi_{ij}, \qquad \Pi_{ij} = \frac{1}{a^2} \Big(\partial_i \varphi \partial_j \varphi - \delta_{ij}(\mathcal{L}) - \langle p \rangle \Big).$ $\rho_{\rm GW}(t) = \frac{M_{\rm Pl}^2}{32\pi V} \int_{\mathbf{k}} |\dot{h}_{ij}(t, \mathbf{k})|^2.$

$$-14$$

 $\Delta_{\delta}(t,\mathbf{p}) = \frac{\mathbf{p}^3}{2\pi^2 V} \langle |\delta(\mathbf{p})|^2 \rangle, \qquad \delta(\mathbf{x}) = \frac{\rho(\mathbf{x}) - \langle \rho \rangle}{\langle \rho \rangle}.$

Extracted from classical-statistical lattice simulations:

Spherical **collapse** of an over-density (including its pressure):

$$\frac{d^2r}{dt^2} = -\frac{8\pi G}{3}\rho_R r - \frac{GM}{r^2} - \frac{1}{\rho}\frac{dp}{dr}. \qquad p \approx \frac{\langle \mathbf{p}^2 \rangle}{3m_a^2}\rho$$

The signal can be **enhanced** if some of the ALP energy is converted into other degrees of freedom [5].

Axion as the inflaton: GW from preheating

ALPs can play the role of the inflaton i.e. axion monodromy inflation [1].

Preheating after inflation involves a **similar** dynamics, and generates

For pressureless matter ($p \approx 0$) the over-density collapses at $x \approx \frac{0.7}{s}$ [3], where $x = a/a_{eq}$.

Pressure **prevents** the collapse (is stronger than gravity), if $x < 1.5 \frac{\eta^4}{\kappa}$ [2].

Fluctuations in the post- inflation scenario, QCD axion	$\eta < 1$	pressure is small, miniclusters form
Fluctuations from parametric resonance, monodromy axion	$\eta \sim \text{few} \times 10 - 100$	over-densities have not collapsed yet

Expected typical size of $R_{\rm today} \sim (10^5 - 10^6) \mathrm{km} \sqrt{\frac{\mathrm{eV}}{m_a}}$ over-densities today:

gravity waves.

 $m \approx 10^{-5} M_{Pl}$ required by observations, $\phi_1 \approx 0.25 M_{pl}$, determined by the slow-roll attractor

References

[1] E. Silverstein, A. Westphal, Phys. Rev. D78, 106003 (2008).

[2] J. Berges, A. Chatrchyan, J. Jaeckel, arxiv:1903.03116

[3] E. Kolb and I. Tkachev, Phys. Rev. D50, 769 (1994)

[4] Z. Huang, Phys. Rev. D83, 123509 (2011).

[5] S. Machado, W. Ratzinger, P. Schwaller, B. Stefanek, JHEP 1901 (2019)

053

Contact: chatrchyan@thphys.uni-heidelberg.de