Search for scalar Dark Energy with ATLAS

Spyros Argyropoulos on behalf of the ATLAS collaboration

> 3 June 2019 PATRAS workshop, Freiburg

THE UNIVERSITY OF IOWA

OVERVIEW & MOTIVATION

Types of matter

- Radiation: $p = \rho/3 \Rightarrow$ decelerating expansion
- (Baryonic/Dark) Matter: $p=0 \Rightarrow$ (more slowly) decelerating expansion
- "Dark Energy": $p < -\rho/3 \Rightarrow$ accelerating expansion
 - Cosmological constant Λ : p=- ρ \Rightarrow exponentially accelerating expansion

Particle Physics

- Cosmological constant = vacuum energy density (120 orders of magnitude off)
- Many **new BSM fields** can also reproduce eq. of state of Dark Energy

How we know it exists

• distance measurements

SN farther than expected

age of globular clusters

without DE: t_{universe} ~ 10 Gyr
 while age oldest clusters >11 Gyr

Effect of DE on CMB

Perlmutter et al, Astrophys.J.517:565-586,1999

CMB radiation

- position of acoustic peaks
- late-time int. Sachs-Wolfe effect
- Baryon Acoustic Oscillations
 - angular distance vs redshift

Large Scale Structure

structure formation slows down

DE = higher distance at higher redshifts

Theory & experiment landscape

Laboratory:

- torsion balance: Eöt-Wash [9,11]
- Casimir forces [9,11]
- Interferometry [9,11]
- Coupling to photons: CAST, CHASE [12,13]

Cosmology/Astro:

- SN/BAO (distance/redshift relations) [14]
- Structure growth [14]
- Lensing [14]
- Stellar burning [9]
- Multi-messenger signals with GW (new!) [10]

- The landscape of viable models is enormous!
- Need multiple experiments to provide as much information as possible
- BUT many questions remain open ...

Open questions

 new particle or modified gravity?

•constant or dynamic?

•interacting or not?

•microscopic nature?

Why search for DE at colliders

- Interaction of DE with SM particles arises naturally in many models
 - Screening of 5th forces: escape detection at high density regions \rightarrow DE must "feel" the density of SM matter \rightarrow non-zero DE/SM interaction
 - ⇒ DE can be produced and constrained at colliders [1]
- Dark degeneracy
 - modified gravity models can lead to same phenomenology as DE

$$\tilde{G}_{\mu\nu} = 8\pi G \; \tilde{T}_{\mu\nu}$$

⇒ need particle physics to distinguish modified gravity from dark energy [2]

- Complementarity with non-collider experiments
 - ⇒ collider experiments sensitive to multitude of signatures
 - ⇒ access different parts of parameter space
 - \Rightarrow investigate microscopic nature of DE

So far no direct search by collider experiments

AN EFT MODEL OF SCALAR DE

The model

- New model based on Effective Field Theory [Brax, Burrage, Englert, Spannowsky <u>PRD94</u> 084054 (2016)]
- Using framework of Horndeski theories
 (most general theories with scalar field with 2nd order eq. of motion)
 ⇒ assumption: DE couples to matter

⇒ independent of microscopic models - offers general framework to study DE

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \mathcal{L}_{i} = \mathcal{L}_{SM} + \sum_{i} \frac{c_{i}}{M^{d-4}} \mathcal{O}^{(d)}$$

 Idea: extend SM Lagrangian with extra operators suppressed by new physics scale M
 ⇒ measure M - translate to the parameters of UV models

At LO M controls the DE cross-section

EFT operators

- 2 classes of operators:
 - ⇒ shift symmetry invariant

 \Rightarrow shift symmetry breaking (ϕ can decay to SM fields - not considered here)

- 9 shift-symmetric operators:
 - kinetic conformal couplings
 - disformal couplings
 - kinetic term for DE field
 - Galileons

⇒ so far we have studied only these 2

- These operators appear in cosmological/non-collider searches
 - Gravitational waves/CMB [5] $\mathcal{L}_7, \mathcal{L}_8$
 - Atom interferometers/Chameleon search [6] $\frac{1}{2}\mathcal{L}_{6,1} + \mathcal{L}_{10,1} + \mathcal{L}_{11,1}$
 - Torsion pendulum search for symmetron DE [7] $-\frac{1}{2}\mathcal{L}_{6,1} \frac{1}{2}\mathcal{L}_{10,2} + \frac{1}{2}\mathcal{L}_{11,2} \frac{1}{4!}\mathcal{L}_{11,4}$

Conformal & disformal couplings - signatures

$$\mathcal{L}_1 = \frac{\partial_\mu \phi \partial^\mu \phi}{M^4} T^\nu_\nu$$

(kinetic) conformal coupling ⇒ enhanced for heavy final states

$$\mathcal{L}_2 = \frac{\partial_\mu \phi \partial_\nu \phi}{M^4} T^{\mu\nu}$$

disformal coupling ⇒ enhanced for high momentum

- Top final states: enhanced sensitivity to L₁ due to high top mass
- Mono-jet final states: enhanced sensitivity to L₂ due to high momentum transfers
- DE particle ϕ stable and non-interacting \Rightarrow seen as missing energy in the detector
 - \Rightarrow Signatures: tt+ E_T^{miss} , jet+ E_T^{miss}

THE SEARCH

JHEP 05 (2019) 142

How DE events look

- Same signatures as DM searches (both DM and DE give MET signature)
- tt+MET: also same signature as stop search slightly more sensitive than tt+DM

- Re-interpret results of:
 - L1: stop search [ATLAS, JHEP 12 (2017) 085]
 - L₂: mono-jet DM search [ATLAS, JHEP 01 (2018) 126]

Analysis

- Find variable that can discriminate signal vs background
- Fit background templates (Monte Carlo) is there an excess of data?

E_T^{miss} in mono-jet analysis

- **No excess** \Rightarrow what is the maximum amount of signal that the data can accommodate? •
- Upper limit on production cross-section for L₁, L₂
 - $\sigma(L_1) < 26 \text{ fb} \Rightarrow M_1 > 309 \text{ GeV}$
 - $\sigma(L_2) < 0.23 \text{ fb} \Rightarrow M_2 > 1260 \text{ GeV}$

INTERPRETATION

Validity of EFT model

- EFT approximation valid when momentum transfer not enough to resolve the interaction: $Q_{tr} \ll M$
- In practice use

$$Q_{\rm tr} < g_* M$$

 g_{\star} : effective coupling related to UV completion of EFT ($g_{\star} < 4\pi$) M : lower limit on EFT suppression scale

Momentum transfer

• Rescale the limit (conservative) to account for events violating the above assumption

$$M_{\rm resc} = R^{1/8} M$$

Interpretation

Exclusion limit vs coupling for L1

Exclusion limit vs coupling for L₂

No sensitivity yet to weakly coupled models for L₁:

- very high momentum transfers due to high top mass
- should improve with higher data/more sensitive search

Sensitivity extends to lower couplings for L₂:

- higher limit
- lower momentum transfers wrt tt+ET^{miss}

Comparison with other experiments

- Disformal coupling analysis already performed for non-collider probes
 - supernovae, atom spectroscopy, fifth force experiments [9 Brax, Burrage, PRD 90, 104009 (2014)]
- Momentum transfers in these processes are small so we can assume that EFT limit is completely valid and compare the limits:

Colliders several orders of magnitude more sensitive to disformal couplings!

Summary and Outlook

- ✓ colliders can provide complementary constraints for some DE models
- ✓ first time experimental collaboration sets limits on DE using collider data
- ✓ most stringent constraints on kinetic conformal and disformal couplings
 - several orders of magnitude stronger than non-collider limits [9]

Things for the future:

- improvement in Run-3 with more data (better limit, pushing g* to lower values)
- optimise search strategy (e.g. adding dedicated selections, combining channels)
- probe more final states ⇒ stronger constraints / enlarged EFT validity

• more operators:

- additional operators can alter E_Tmiss shape
- complementary with non-collider searches?
- theorists:
 - any signatures that we are missing?
 - translate constraints into specific benchmark models (?)

Would something like this be feasible/useful?

With thanks to the conference organisers for the invitation and P. Brax, C. Burrage, C. Englert, M. Spannowsky for helpful discussions

References

[1] <u>A. Joyce, et al, Phys. Rept. 568 (2015) 1, arXiv: 1407.0059 [astro-ph.CO]</u>

P. Brax, Rep. Prog. Phys., 81 (2018) 016902

[2] Kunz PRD 80 (2009) 123001

Kunz, Sapone PRL 98 (2007) 121301

[3] P. Brax et al, Phys. Rev. D94 084054 (2016)

[4] P. Brax, P. Valageas, Phys. Rev. D 95, 043515 (2017)

[5] Sakstein, Jain, Phys. Rev. Lett. 119, 251303 (2017)

[6] <u>Burrage, Copeland, Hinds, JCAP 03 (2015) 042</u>

[7] Upadhye, PRL 110 (2013) 031301

[9] Brax, Burrage, Phys. Rev. D 90, 104009 (2014)

[10] LIGO/Virgo Phys. Rev. Lett. 119 (2017) 161101 ; LIGO/VIRGO Astrophys. J. 848 (2017) L12

[11] Burrage, Sakstein, JCAP11 (2016) 045

[12] <u>CHASE</u>, <u>Science 349 (2015) 849</u>

[13] CAST, Phys. Lett. B749 (2015) 172

[14] <u>Weinberg et al, Phys. Rept. 430 (2013) 87</u>

Shift symmetric models [4]

- Nearly massless field needed for cosmic acceleration
 - model with complex scalar field Φ with global U(1) symmetry
 - Goldstone mode ϕ below symmetry breaking scale f (ϕ plays role of DE)

$$S = \int d^4x \sqrt{-\tilde{g}} \left[-\tilde{g}^{\mu\nu} \partial_\mu \bar{\Phi} \partial_\nu \Phi - V(|\Phi|^2) \right]$$
$$\Phi = f e^{i\phi/(\sqrt{2}f)}$$

- Residual symmetry in the broken phase ⇒ shift symmetry
 - forbids Yukawa interactions of DE field with SM matter

Event selection

tt+E_Tmiss

Variable	Region			
variable	SRA_TT	SRA_TW	SRA_T0	
N ^{jet}	\geq 4 within $ \eta < 2.7$			
N ^{b-jet}	≥ 2			
$P_T^{\rm jet}$	> 80, 80, 40, 40 GeV			
$m_{\text{jet},R=1.2}^0$	> 120 GeV			
$m_{\text{jet},R=1.2}^1$	> 120 GeV	[60, 120] GeV	< 60 GeV	
$m_T^{b,\min}$	> 200 GeV			
N _{b-jet}	≥ 2			
τ -veto	yes			
$ \Delta \phi(\text{jet}^{0,1,2}, \mathbf{p}_T^{\text{miss}}) $	> 0.4			
$m_{\text{jet},R=0.8}^0$	> 60 GeV			
$\Delta R(b,b)$	>1 -			
$m_{T2}^{\chi^2}$	> 400 GeV	> 400 GeV	> 500 GeV	
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 400 GeV	> 500 GeV	> 550 GeV	

Mono-jet

$E_{\rm T}^{\rm miss}$ > 250 GeV		
leading jet $p_T > 250$ GeV and $ \eta < 2.4$		
\leq 4 selected jets with P_T > 30 GeV and $ \eta < 2.8$		
$\Delta \phi (jet, \vec{p}_T^{miss}) > 0.4$ for all selected jets		
no identified electron with $p_T > 20 \text{ GeV}$		
no identified muon with $p_T > 10 \text{ GeV}$		

Iterative limit rescaling

• Taken from <u>ATL-PHYS-PUB-2014-007</u>

• Start with nominal expected limit assuming 100% validity

- Until $R_i = 1$ or 0
 - Calculate $Q_{tr}^{max}(i) = 4\pi M_{in}(i) = 4\pi M_{out}(i-1)$
 - Calculate $R_i = N(Q_{tr} < Q_{tr}^{max}(i))/N(Qtr < Q_{tr}^{max}(i-1))$
 - Evaluate $M_{out}(i) = R_{tot}^{1/8} \cdot M_{in}(i)$
- Determine $M_{resc} = (\Pi R_i)^{1/8} \cdot M_{in}$

Example for $L_{2 \text{ with }}g \neq =4$					
Min	Q _{tr} max(i)	Q _{tr} max(i-1)	Ri	Mout	
1263	5052	13000	0.83	1234	
1234	4937	5052	0.98	1231	
1231	4924	4937	1	1231	

Operators

Kinetic conformal couplings	$\mathcal{L}_{1} = \frac{\partial_{\mu}\phi\partial^{\mu}\phi}{M^{4}}T_{\nu}^{\nu}$ $\mathcal{L}_{3,n} = \left(\frac{\partial_{\mu}\phi\partial^{\mu}\phi}{M^{4}}\right)^{n}T_{\nu}^{\nu}$
Disformal couplings	$\mathcal{L}_{2} = \frac{\partial_{\mu}\phi\partial_{\nu}\phi}{M^{4}}T^{\mu\nu}$ $\mathcal{L}_{4,n} = \left(\frac{\partial_{\alpha}\phi\partial^{\alpha}\phi}{M^{4}}\right)^{n}\frac{\partial_{\mu}\phi\partial_{\nu}\phi}{M^{4}}T^{\mu\nu}$ $\mathcal{L}_{5,n-1} = \frac{1}{M^{4n}}\partial_{\alpha_{1}}\phi\partial_{\beta_{1}}\phi\cdots\partial_{\alpha_{n}}\phi\partial_{\beta_{n}}\phi\frac{2^{n-1}}{\sqrt{-g}}\frac{\partial^{n-1}(\sqrt{-g}T^{\alpha_{1}\beta_{1}})}{\partial g_{\alpha_{2}\beta_{2}}\cdots\partial g_{\alpha_{n}\beta_{n}}}$
DE kinetic term	$\mathcal{L}_{6,n} = \frac{(\partial_{\mu}\phi\partial^{\mu}\phi)^n}{M^{4(n-1)}}$
Galileon	$\mathcal{L}_{7} = \frac{1}{M^{3}} \partial_{\mu} \phi \partial^{\mu} \phi \Box \phi$ $\mathcal{L}_{8} = \frac{1}{M^{6}} \partial_{\mu} \phi \partial^{\mu} \phi [2(\Box \phi)^{2} - 2D_{\alpha} D_{\beta} \phi D^{\beta} D^{\alpha} \phi]$ $\mathcal{L}_{9} = \frac{1}{M^{9}} \partial_{\mu} \phi \partial^{\mu} \phi [(\Box \phi)^{3} - 3(\Box \phi) D_{\alpha} D_{\beta} \phi D^{\beta} D^{\alpha} \phi + 2D_{\alpha} D^{\beta} \phi D_{\beta} D^{\gamma} \phi D_{\gamma} D^{\alpha} \phi]$

DE vs DM

Much higher MET in general than DM

- although this obviously depends on the model parameters
- DE would be indistinguishable from DM in such a search

Brax et al., Phys. Rev. D 94, 084054 (2016)

Effect of additional operators

- Additional operators would alter both the cross-section and the normalisation
- More sophisticated analysis necessary

Brax et al., Phys. Rev. D 94, 084054 (2016)

Limits on disformal coupling from other sources

Source of bound	Lower bound on M in GeV	Environment	Discussed in Section
Unitarity at the LHC	30	Lab. vac.	3
CMS mono-lepton	120	Lab. vac.	3
CMS mono-photon	490	Lab. vac.	3
Torsion Balance	$7 imes 10^{-5}$	Lab. vac.	4.1
Casimir effect	0.1	Lab. vac.	5.1
Hydrogen spectroscopy	0.2	Lab. vac.	6
Neutron scattering	0.03	Lab. vac.	7
Bremsstrahlung	4×10^{-2}	Sun	8.3
	0.18	Horizontal Branch	8.3
Compton Scattering	0.24	Sun	8.4
	0.81	Horizontal Branch	8.4
Primakov	4×10^{-2}	Sun	8.5
	0.35	Horizontal Branch	8.5
Pion exchange	~ 92	SN1987a	8.6

Comparing limits

Burrage, Sakstein JCAP 11 (2016) 045

 plot here shows constraints on chameleons:

$$\mathcal{L} = \frac{1}{2} \mathcal{L}_{6,1} + \mathcal{L}_{10,1} + \mathcal{L}_{11,-n}$$
$$= \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + \frac{M_{11}^{4+n}}{\phi^{n}} + \frac{\phi T^{\mu}_{\mu}}{M_{10}}$$

 does it make sense to have something similar for M₁, M₂ including collider and non-collider experiments?