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The general idea

= Huge cross-sections at the LHC = Example |: Dark Photon
" N, =~ 2.3x10% inelastic pp = pp—A’X (here many possible
scattering events for an integrated production mechanism)
luminosity of 300 fb- = 0> Aly
= Extremely weakly-coupled and = A’ travels ~O(100)m,
light new particles may be = A" >etem,utu-
produced in sufficient numbers in
the very forward region. = Example II: ALPS
= dominant production mechanism
= Such particles may be highly is Primakoff process yN — aN’X of
collimated high energetic photons interacting
= typically produced within 8~Aycp/E with the LHC infrastructure
= implies that ~100 m down-stream, = FASER would be able to detect
such particles have only spread ALPs with m,~MeV and g,,, = 10~*
out ~10 cm in the transverse GeV-1, as those would travel up to
plane. 350m and decay then into two

photons, which can be detected.
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Experimental Site

= 480m from ATLAS
collision point (T112).

= Transfer line
connecting SPS and
LHC tunnels used for
LEP, but now unused

= Limited space
= The floor of the tunnel
needs to be lowered
by <50 cm
= nstall FASER detector
on the beam collision
axis
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FASER Experiment

ForwArd Search ExpeRiment at the LHC

Low cost

= Small detector (r=10 cm, 5 m long).

= The detectors developed for other
experiments will be recycled as much
as possible (tracker, calo, DAQ).

= Construction cost: <1MCHF

Quick!

= Aim to construct the detector during
LS2 and start data-taking in 2021

= |t is big advantage to use detectors
that are already used

Excellent sensitivity!
= FASER will explore large parameter
space of new particles
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Signal and

Scinti. 0.5T magnet Scinti. 0.5T magnet 0.5T magnet Scinti.
Decaying to
A’ e’e” pair -
————— — -------’H\‘}T
- Tr:ck_cr Trz;kcr Trz;kcr Calorimeter

= Signal: two e*e tracks ® High energetic muons and neutrinos are the

(or 2y) originating from main backgrounds.
a new particles = ~100Hz of muons going through the tracker
= 150 fb-'@Run3 = 80k muon events with y or EM/HD shower

= Afew (~100 GeV) CC/NC neutrino events

= Rocks and LHC

shielding eliminates = Can be reduced to negligible level, assuming
most potential charged particle veto with efficiency of
backgrounds. 99.99%
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Detector Concept

= The detector consists of:
= Scintillator veto/trigger
= 1.5m-long decay vol. 0.5-0.6 T magnetic field
= ?2m-long spectrometer with 3 tracking stations in
0.5 T magnetic field
= EM calorimeter

Scintillator/Pb Veto /

to veto incoming charged _—
particles and protons
\

]

- 48

Particles

100.00 mm Tracking stations
3 planes of silicon strip
detector per station

A
mn/g

Trigger/preshower |
scintillator station /

/
Electromagnetic
Trigger/timing canrimeFer.
scintillator station (Lead/scintillator)

0.6 Tesla permanent
dipole magnets
from IP1 with 20 cm aperture
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The Spectrometer

: Distance of ee from A’ @FASER
" Permanent mag net Wlth =] 0.1 -Horizontal Track Separation

Station1 Station2 §

~0.5 T will be used for ete-  "otsfy,, S sete

separation. I =
0.1
. 0.08
= The magnet will be 008
constructed by the CERN 0.04f
magnet group. 002

= The spectrometer needs to
identify two tracks from
A'—ete with >300 um
distance (m, = 100 MeV).

Permanent magnet block (NdFeB)
Magnetic yoke (low carbon steel)

Non magnetic internal ring (stainless steel)

= Silicon strip detector will be
used for the tracker

Non magnetic frame (extruded Cu or Al)
Non magnetic shim (stainless steel)
Epoxy resin
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Tracker

Hybrid with ASICs

= 80 spare ATLAS SCT barrel O —
modules will be used for FASER

tracker.
= Thanks to ATLAS SCT
collaboration!

= 80 um pitch with 12.8 cm length.

= FASER tracker consists of 3 it D
stations each with 3 SCT layers WHRED Sioey
= One layer consists of 8 SCT
modules.

= Quality assurance test was

performed.

= 80 modules were already selected
for FASER tracker.
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Calorimeter

Module under test

= FASER EM calorimeter for
measuring EM energy, electron/
photon identification, Trigger.
= 4 spare LHCb outer ECAL 7 Cs-source
modules will be used. WPV
= Thanks to LHCb for letting us use
these modules!

LHCb PMT
(with their PS
and readout)

Measurement in FASER QA

Scanning the layers

\

" 66 layers of lead/scintillator (25
radiation length), light out by b
wavelength shifting fibers.

1000 f

800 | Rise due to lower

light attenuation

" ~1% energy reso. for 1TeV
electrons.

PMT signal / a.u.
g

8

\

Source entering active area

g

(; 180 2(;0 380 4(;0 5?)0
source position / mm
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Scintillator

= Scintillator detectors for
= Creating a trigger signal.
= Vetoing charged particles entering
the decay volume.

= Require extremely efficient

charged particle veto (>99.99%).
= |mportant for BG suppression.
= achieved by 4 layers of scintillators

= Will be produced at CERN
scintillator laboratory.
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Muon Flux and other

backgrounds

= The muon flux at FASER site was evaluated
with FLUKA.

500HL-LHC: Muon- distribution at FASER

= Due to bending from LHC magnets, muon

flux on line-of-sight (LOS) is reduced. 200

= ptend to be bent to the left and p* to the 100 R 2%
right of FASER

= FASER site is perfect place to escape from
muons from [P1!

1010

-200
-400 -300 -200 -100 O 100 200 300 400 500
x (cm)

10-11

= Background for ALP searches: high energy
neutrino’s interacting in the calorimeter to

- Energy threshold|Charged particle flux
give large EM showers | iGeV] fom2 571]
= either muon neutrinos leading to hadronic 10 0.40
showers with 19, 100 0.20
= or (more rarely) electron neutrinos interacting 1000 Ll

to give electrons
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Beam Backgrounds

and Radiations

= Beam baCkground 1°5i TimePix y wio tungsten (E>S0MeV)
= The emulsion detector and TimePix
beam loss monitor were installed at T112

o* with tungsten (E>1GeV)

in 2018 to measure particle flux. 0%
= The results were consistent with FLUKA |
expectation. 107}

= Detailed study is ongoing.
10% g N
= Radiation: FLUKA expectation was Ll s
confirmed by measurement with | |

BatMon detector:
" <5 x10-3 Gylyear
= <5x107 1 MeV neg/year

= Conclusion: FASER does not need
radiation hard electronics.
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Physics Reach:

Dark Photons and Dark Higgs

1073
1074}
D
10_5§
10_6§ N )
g ‘Dark Higgs ...
102 101 1 101 1 10
my [GeV] my [GeV]

= FASER has sensitivity to coupling strength of ~10-° for dark photon.
= Assumption: O background and 100% efficiency.
= FASER, LHCb and Belle2 are complementary and can cover most search
region of m,. < 1GeV
= FASER 2 - possible future upgrade with 1m radius and 3000/fb of data.
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Physics Reach:

Heavy Neutral Leptons and ALPs

= For ALP->yy decay, magnetic field

does not help separate closely

spaced decay products

= maybe pre-shower but challenging
to resolve closely spaced (~1mm)
high energy photons (>500 GeV)

= Preliminary studies suggest that
events with no tracks and a large EM

-
\\\\\\\\\\\\\\\\
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gayy
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energy in the calorimeter would be 10- SeaQuest
~background free
= an ALP signal would be 10-7LALP - Photon Dominance |, .- .
detectable without the need to 1072 10~ 1
m, [GeV]

resolve the 2 photons.

= FASER would be able to detect ALPs with m,~MeV and g,,,~10* GeV', as
those would travel up to 350m and decay then into two photons, which
can be detected.
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Schedule towards

data-taking

The

p~~4& University

&Y. Of
w  Sheffield.

= Documentation and approval
= | etter Of Intent (LOI) was submitted to LHCC
in July 2018 (arXiv:1811.10243).

b i .
= Technical Proposal (TP) was submitted to U eeen Technion
LHCC in November 2018 (arXiv:1812:09139) ,
= The experiment was approved by CERN at A Dreeneve [0 103 10D

Research Board on March 5th 2019.

e
= Funding for detector construction/
operatlo_n was secu_rgd fro_m Simons N UC
Foundation and Heising-Simons S.Z UNIVERSITY IRVINE

Foundations. T — [{UTGERS

* Timeline @ KEK w oo
i i i WASHINGTON

= Construction/Comm. is planned during LS2.

= Detector installation is foreseen in May 2020. N EZE
= Data-taking will start from 2021, NS g voers OREGON

ssynchromzmg with LHC Run3.
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Summary

= FASER will search for new light particles
coming from ATLAS pp collision point (IP1)
= can explore uncovered parameter space,
and is complementary with searches by
LHCb and Belle?2.

= The detector will be installed at 480 m away
from IP1 where SPS and LHC rings are
connected and is based on spare LHC
experiment detector components

- = Workintensive years ahead to get everything
L ready in time
0
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