The XENON Dark Matter Project at Gran Sasso National Laboratory

Andrea Molinario

XENON collaboration

A. Molinario

Dual-phase Xenon TPC

Low energy threshold

Scalable to multi-ton ³

Dual-phase Xenon TPC

Dual-phase Xenon TPC

Timeline of the project

XENON1T

Data taking

Monitoring the stability of the detector and PMTs

A. Molinario

Electronic recoil background

A. Molinario

Nuclear recoil background

Source

Mitigation strategy

Radiogenic neutrons (from materials)

Material selection, reject multiple scatter, fiducialization

CEvNS (mainly ⁸B solar v)

Cosmogenic neutrons

Muon Veto, reject multiple scatter, fiducialization

Dedicated search for multiple scatter events found 9 candidates with (6.4±3.2) expected

Constrain the expected singlescatter neutron event rate

Other backgrounds

Accidental coincidences

Random pairing of lone S1 and S2

Background model derived from data and used in likelihood estimation

Surface events

²²²Rn progeny plate-out on the inner surface of PTFE panels

Charge loss which reduces S2 size Events shifted in NR band

Data-driven background model

Background predictions

ROI corresponds in average to [4.9, 40.9] keV_{nr} ([1.4, 10.6] keV_{ee})

Background model in 4 dimensions: S1, S2, R, Z

50% NR acceptance with 99.75% ER rejection

Statistical inference in 1.3 t fiducial volume and full (S1, S2) space

13

14

Performed unbinned profile likelihood, model uncertainties included as nuisance parameters

Maximum radius of 1.3 t fiducial volume set by surface event contribution.

A. Molinario

E. Aprile et al., Phys. Rev. Lett. 122, 141301 (2019)

Same event selection criteria for a SD search

Most stringent limit on WIMPneutron scattering cross section

Exclude new parameter space in isoscalar theory with axial-vector mediator

A. Molinario

WIMP-Pion coupling

E. Aprile et al., Phys. Rev. Lett. 122, 071301 (2019)

Coupling of WIMP with virtual pion-current between two nucleons Same falling exponential differential recoil spectrum as WIMP-nucleon interaction Limit setting as in SI analysis

A. Molinario

¹²⁴Xe Double Electron Capture

A. Molinario

PATRAS 2019

Dark Matter Project

¹²⁴Xe Double Electron Capture

Detected peak at (64.2 \pm 0.5) keV with 4.4 σ significance

Measured half-life of the process $T_{1/2} = (1.8 \pm 0.5_{stat} \pm 0.1_{sys}) \times 10^{22} \text{ y}$ E. Aprile et al., Nature 568 (2019), no.7753, 532-535

¹²⁴Xe Double Electron Capture

Dark Matter Project

Ongoing analysis

S2-only analysis

WIMP search with Migdal effect

ALPs, Super WIMPs, Dark photons, Solar Axions

Annual modulation

 $0\nu\beta\beta$ of $^{\rm 136}Xe$

³⁷Ar calibration

Ongoing analysis

S2-only analysis

WIMP search with Migdal effect

Low energy Electronic Recoils

ALPs, Super WIMPs, Dark photons, Solar Axions

Annual modulation

 $0\nu\beta\beta$ of $^{\rm 136}Xe$

³⁷Ar calibration

A. Molinario

Tests after SR1

Upgrade of purification system

New magnetic pump

Increased purification of gas flow

1 ms electron lifetime reached

Rn-removal

With new magnetic pump Radon reduced by 45%

Rn distillation tested, another 30% reduction

Factor 4 above XENONnT goal (1µBq/kg)

³⁷Ar calibration

Test of new calibration source for low energy ER (2.8 keV, 0.27 keV)

XENONnT

A. Molinario

New features XENONnT

NEW TPC

494 PMTs

1.5 m height 1.3 m diameter

LXE PURIFICATION

Much faster purification speed

Possible to purify the 8 t of Xe in a reasonable time

RADON DISTILLATION COLUMN

Goal 1 µBq/kg Rn contamination

Rn distillation already tested in XENON1T

NEUTRON VETO

0.2% Gddoped water

120 additional PMTs around cryostat

XENON1T reached 1 ton-year exposure with the lowest ER background for a dark matter detector

Most stringent limit for WIMP-nucleon SI cross section was set for WIMP masses greater than 6 GeV/c²

First detection of double electron capture of ¹²⁴Xe, longest half-life ever measured

Upgrade to XENONnT is ongoing, expected to start data taking by the end of 2019

Calibrations (1)

Calibrations (2)

Data – MC matching

0vββ decay

