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Low-Mass Axion Detection with Lumped Elements; 
Implications of Modified Electrodynamics



Controversy at Low Mass; Compton Wavelength of Axion is Large
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An investigation is performed of the Lorentz-violating electrodynamics extracted from the renormalizable
sector of the general Lorentz- and CPT-violating standard-model extension. Among the unconventional prop-
erties of radiation arising from Lorentz violation is birefringence of the vacuum. Limits on the dispersion of
light produced by galactic and extragalactic objects provide bounds of 3!10"16 on certain coefficients for
Lorentz violation in the photon sector. The comparative spectral polarimetry of light from cosmologically
distant sources yields stringent constraints of 2!10"32. All remaining coefficients in the photon sector are
measurable in high-sensitivity tests involving cavity-stabilized oscillators. Experimental configurations in
Earth- and space-based laboratories are considered that involve optical or microwave cavities and that could be
implemented using existing technology.
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I. INTRODUCTION

Lorentz symmetry underlies the theory of relativity and
all accepted theoretical descriptions of nature at the funda-
mental level. A crucial role in establishing both the rotation
and boost components of Lorentz symmetry has been played
by experimental studies of the properties of light. In the clas-
sic tests, rotation invariance is investigated in Michelson-
Morley experiments searching for anisotropy in the speed of
light, while boost invariance is studied via Kennedy-
Thorndike experiments seeking a variation of the speed of
light with the laboratory velocity #1–3$.
In this work, a theoretical study is performed of various

experiments testing Lorentz symmetry with light and other
electromagnetic radiation. The analysis is within the context
of the Lorentz- and CPT-violating standard-model extension
#4$, developed to allow for small general violations in Lor-
entz and CPT invariance #5$. The Lagrangian of this theory
includes all observer Lorentz scalars formed by combining
standard-model fields with coupling coefficients having Lor-
entz indices. At the level of quantum field theory, the viola-
tions can be regarded as remnants of Planck-scale physics
appearing at attainable energy scales. The coefficients for
Lorentz violation may be related to expectation values of
Lorentz tensors or vectors in an underlying theory #6$. To
date, experimental tests of the standard-model extension
have been performed with hadrons #7–10$, protons and neu-
trons #11$, electrons #12,13$, photons #14,15$, and muons
#16$.
In the present context of studies of electrodynamics, the

standard-model extension is of interest because it provides a
general field-theoretic framework for investigating the Lor-
entz properties of light. The theory contains as a subset a
general Lorentz-violating quantum electrodynamics !QED",
which includes a general Lorentz-violating extension of the
Maxwell equations. We study experiments that can measure
the coefficients for Lorentz violation in this generalized elec-
trodynamics. Our attention is restricted here to exceptionally
sensitive experiments that could be in a position to detect the
minuscule effects motivating the standard-model extension.
A basic feature of Lorentz-violating electrodynamics is

the birefringence of light propagating in vacuo. This results
in several potentially observable effects, including pulse dis-
persion and polarization changes. One goal of this work is to
consider the implications of these effects for the propagation
of radiation on astrophysical scales. We use available obser-
vations to constrain certain coefficients for Lorentz violation.
Another goal of this work is to analyze modern versions

of some classic tests of special relativity based on resonant-
cavity oscillators #17–19$, which have extreme sensitivity to
the properties of electromagnetic fields. These experiments
depend on the Earth’s sidereal and orbital motion. However,
the advent of the International Space Station !ISS" makes it
feasible to perform laboratory experiments in space, where
the orbital motion can yield different sensitivity to Lorentz-
violating effects #20$. We consider here both space- and
Earth-based laboratory experiments with resonant cavities.
The structural outline of this paper is as follows. Section

II presents some basic results and definitions for the general
Lorentz-violating electrodynamics and outlines the connec-
tion to some test models. We then consider birefringence
experiments, beginning in Sec. III A with some general is-
sues. Constraints stemming from the resulting effects on
pulse dispersion from astrophysical sources are addressed in
Sec. III B, while those from polarization changes over cos-
mological scales are treated in Sec. III C. A general analysis
for laboratory-based experiments on the Earth and in space is
presented in Sec. IV A. Sections IV B and IV C apply this
analysis to experiments with optical and microwave resonant
cavities. We summarize in Sec. V. Throughout this work, we
adopt the conventions of Ref. #4$.

II. LORENTZ-VIOLATING ELECTRODYNAMICS

This section provides some background and contextual
information about the general Lorentz-violating electrody-
namics. The basic formalism is presented, and some defini-
tions used in later sections are introduced. We also discuss
the connection between this theory and some test models for
Lorentz violation.
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where E! and B! are the electric and magnetic fields obtained
from solving the modified Maxwell equations !2". The 3
!3 matrices #DE , #HB , #DB , and #HE are defined by

!#DE" jk"#2!kF"0 j0k,

!#HB" jk"
1
2 $ jpq$krs!kF"pqrs,

!#DB" jk"#!#HE"k j"!kF"0 jpq$kpq.
!5"

The double-trace condition on (kF)#%&' translates to the
tracelessness of (#DE$#HB), while (kF)#[%&']"0 implies
the tracelessness of #DB"#(#HE)T. This leaves #DE and
#HB with eleven independent elements and the matrix #DB
"#(#HE)T with eight, which together represent the 19 in-
dependent components of kF . Note also that #DE and #HB
are parity even, while #DB"#(#HE)T is parity odd.
With these definitions, the modified Maxwell equations

!2", !3" take the familiar form

(! !H! #)0D! "0, (! •D! "0,

(! !E! $)0B! "0, (! •B! "0. !6"

As a consequence, many results from conventional electro-
dynamics in anisotropic media also hold for this Lorentz-
violating theory. For example, the energy-momentum tensor
takes the standard form in terms of E! , B! , D! and H! . This
implies the usual Poynting theorem, which can be applied in
conjunction with the symmetries of the matrices in Eq. !4" to
show that the vacuum is lossless.
For the applications to be addressed in later sections, it is

convenient to introduce the following decomposition of
(kF)#%&' coefficients:

! #̃e$" jk"
1
2 !#DE$#HB" jk,

! #̃e#" jk"
1
2 !#DE##HB" jk#

1
3 * jk!#DE" ll,

! #̃o$" jk"
1
2 !#DB$#HE" jk,

! #̃o#" jk"
1
2 !#DB##HE" jk,

#̃ tr"
1
3 !#DE" ll. !7"

The first four of these equations define traceless 3!3 matri-
ces, while the last defines a single coefficient. All parity-even
coefficients are contained in #̃e$ , #̃e# and #̃ tr , while all
parity-odd coefficients are in #̃o$ and #̃o# . The matrix #̃o$

is antisymmetric while the other three are symmetric.

The form of this decomposition helps in determining the
portion of the parameter space to which experiments are sen-
sitive and how different experiments might overlap. For ex-
ample, typical laboratory experiments with electromagnetic
cavities search for rotation-violating parity-even observables.
The sensitivity of such experiments is therefore expected to
be dominantly to the ten rotation-violating parity-even coef-
ficients #̃e$ and #̃e# . For those observables depending at
leading order on the velocity, the eight coefficients #̃o$ and
#̃o# can be expected to play a role. Finally, at second order
in the velocity one can expect the sole rotation-invariant
quantity #̃ tr to affect measurements. These considerations are
confirmed by the results of the detailed analysis in the sec-
tions below.
As another example of the use of the decomposition !7",

recall that birefringence is known to depend on ten linearly
independent combinations of the components of kF , which
can be chosen as +15,

ka"+!kF"0213, !kF"0123, !kF"0202#!kF"1313,

!kF"0303#!kF"1212, !kF"0102$!kF"1323,

!kF"0103#!kF"1223, !kF"0203$!kF"1213,

!kF"0112$!kF"0323, !kF"0113#!kF"0223,

!kF"0212#!kF"0313]. !8"

Relating these to the #̃ matrices, we find

! #̃e$" jk"#! #!k3$k4" k5 k6

k5 k3 k7

k6 k7 k4
" ,

! #̃o#" jk"! 2k2 #k9 k8

#k9 #2k1 k10

k8 k10 2!k1#k2"
" . !9"

In this way, we can see directly that birefringence is con-
trolled by the matrices #̃e$ and #̃o# .
In terms of the # matrices defined in Eq. !5", and assum-

ing as before that (kAF)-"0, the Lagrangian !1" becomes

L"
1
2 !E! 2#B! 2"$

1
2E

! •!#DE"•E! #
1
2B

! •!#HB"•B!

$E! •!#DB"•B! . !10"

Similarly, using instead the #̃ matrices defined in Eq. !7", we
find

L"
1
2 +!1$#̃ tr"E! 2#!1##̃ tr"B! 2,$

1
2E

! •! #̃e$$#̃e#"•E!

#
1
2B

! •! #̃e$##̃e#"•B! $E! •! #̃o$$#̃o#"•B! . !11"
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A. Basic theory

The standard model of particle physics is believed to be
the low-energy limit of a fundamental theory that includes all
the forces in nature. The natural scale of this fundamental
theory is likely to be determined by the Planck mass. The
possibility that Lorentz- and CPT-violating signals from this
theory may be observable at energies attainable today led to
the development of the standard-model extension !4", which
is a general theory based on the standard model but allowing
for violations of Lorentz and CPT symmetry !5". The addi-
tional terms must be small because the usual standard model
agrees well with experiment. They may originate from spon-
taneous symmetry breaking in the fundamental theory !6".
The standard-model extension can be defined as the usual

standard-model Lagrangian plus all possible additional
Lorentz- and CPT-violating terms involving standard-model
fields that maintain invariance under Lorentz transformations
of the observer’s inertial frame. This invariance ensures that
the physics is independent of the choice of coordinates. The
Lorentz violation is associated with rotations and boosts of
particles or localized field configurations in a fixed observer
inertial frame.
Many of the detailed investigations of the standard-model

extension have been performed under the simplifying as-
sumption that the additional Lorentz- and CPT-violating
terms preserve the SU(3)!SU(2)!U(1) local gauge sym-
metry of the usual standard model. Another widely adopted
simplifying assumption is that the coefficients for Lorentz
violation are independent of position. This implies the viola-
tion is restricted to the Lorentz symmetry instead of the full
Poincaré symmetry and has several useful consequences for
experiment, including the conservation of energy and mo-
mentum. It is also often convenient to restrict attention to the
renormalizable sector of the theory, since this is expected to
dominate the physics at low energies. However, nonrenor-
malizable terms are known to play an important role at
higher energies !21".
Extracting terms involving the photon fields from the

standard-model extension yields a Lorentz- and
CPT-violating extension of QED !4". The fermion sector of
this theory has been widely studied. Here, we focus attention
on the pure-photon sector and limit attention to the renormal-
izable terms, which involve operators of mass dimension
four or less. The relevant Lagrangian is !4"

L"#
1
4 F#$F#$$

1
2 %kAF&'(')#$A)F#$

#
1
4 %kF&')#$F')F#$, %1&

where F#$*+#A$#+$A# . This theory maintains the usual
U%1& gauge invariance under the transformations qA#
→qA#$+#, . The Lagrangian contains the standard Max-
well term and two additional Lorentz-violating terms. The
first of these extra terms is CPT odd, and its coefficient
(kAF)' has dimensions of mass. The other is CPT even. Its
coefficient (kF)')#$ is dimensionless and has the symmetries

of the Riemann tensor and a vanishing double trace, which
implies a total of 19 independent components.
The CPT-odd term has received much attention in the

literature !22". This term provides negative contributions to
the canonical energy and therefore is a potential source of
instability. One solution is to set the coefficient to zero,
(kAF)'"0. This is theoretically consistent with radiative
corrections in the standard-model extension and is well sup-
ported experimentally: stringent constraints on kAF have
been set by studying the polarization of radiation from dis-
tant radio galaxies !14".
In contrast, much less is known about the CPT-even co-

efficient kF . Theoretical studies show that it provides posi-
tive contributions to the canonical energy and that it is radia-
tively induced from the fermion sector in the standard-model
extension !4,23". Constraints on some components have re-
cently been obtained from optical spectropolarimetry of cos-
mologically distant sources !15". In the present work, we
focus on the experimental implications of this CPT-even
term. The coefficient (kAF)' is set to zero for the analysis.
The equations of motion from Lagrangian %1& are

+-F#
-$%kF&#-./+-F./"0. %2&

These are modified source-free inhomogeneous Maxwell
equations. The homogeneous Maxwell equations,

+#F̃#$*
1
2 (#$')+#F')"0, %3&

remain unchanged.
Although it lies beyond our present scope, the techniques

presented here and the results obtained can be generalized to
the nonrenormalizable sector. The nonrenormalizable terms
can be classified according to their mass dimension. The di-
mensions of the corresponding coefficients are inverse pow-
ers of mass, and it is plausible that these coefficients are
suppressed by corresponding powers of the Planck scale.
Terms of this type appear in various special Lorentz-
violating theories, including noncommutative field theories
incorporating QED !24". Indeed, any coordinate-independent
theory with a photon sector containing nonrenormalizable
Lorentz-violating terms must be a subset of the standard-
model extension. It would be interesting to provide a detailed
study of the nonrenormalizable terms in the Lorentz-
violating electrodynamics and their experimental signals.

B. Analogy and definitions

A useful analogy exists between the Lorentz-violating
electrodynamics in vacuo and the conventional situation in
homogeneous anisotropic media !4". The idea is to define
fields D! and H! by the six-dimensional matrix equation

! D!
H!
" "! 1$'DE 'DB

'HE 1$'HB
" ! E!
B!
" , %4&
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We investigate experiments that are sensitive to the scalar and parity-odd coefficients for Lorentz
violation in the photon sector of the standard model extension (SME). We show that of the classic tests of
special relativity, Ives-Stilwell (IS) experiments are sensitive to the scalar coefficient, but at only parts in
105 for the state-of-the-art experiment. We then propose asymmetric Mach-Zehnder interferometers with
different electromagnetic properties in the two arms, including recycling techniques based on travelling
wave resonators to improve the sensitivity. With present technology we estimate that the scalar and parity-
odd coefficients may be measured with a sensitivity better than parts in 1011 and 1015 respectively.
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I. INTRODUCTION

The postulate of Lorentz invariance (LI) is at the heart of
special and general relativity and therefore one of the
cornerstones of modern physics. The central importance
of this postulate has motivated tremendous work to experi-
mentally test LI with ever increasing precision [1].
Additionally, many unification theories (e.g., string theory
or loop gravity) are expected to violate LI at some level,
[2–4] which further motivates experimental searches for
such violations.

Numerous test theories that allow the modelling and
interpretation of experiments that test LI have been devel-
oped. Kinematical frameworks [5,6] postulate a simple
parameterization of the Lorentz transformations with ex-
periments setting limits on the deviation of those parame-
ters from their values in special relativity. A more
fundamental approach is offered by theories that parame-
terize the coupling between gravitational and nongravita-
tional fields (e.g., TH!" formalisms [1,7]). Formalisms
based on string theory [2,3] have the advantage of being
well motivated by theories of physics that are at present
good candidates for a unification of gravity and the other
fundamental forces of nature. Fairly recently a general
Lorentz violating extension of the standard model of par-
ticle physics (standard model extension, SME) has been
developed [8–10] whose Lagrangian includes all parame-
terized Lorentz violating terms that can be formed from
known fields. Many of the theories mentioned above are
included as special cases of the SME [11,12]. In this paper
we restrict our attention to the photon sector of the SME.
Within this framework we analyze past experiments that
can be shown to set limits on SME parameters that have not
been determined previously, and propose new experiments
that could significantly improve those limits.

As shown in [11] the photon sector of the SME can be
expressed in the form of modified source free Maxwell

equations, which take their familiar form

r:D ! 0; (1a)

r:B ! 0; (1b)

r"E# @tB ! 0; (1c)

r"H$ @tD ! 0; (1d)

but with modified definitions of D and H

D
H

! "
!

!0%e!r # #DE&
#####
!0
"0

q
#DB#####

!0
"0

q
#HE "$1

0 % e"r
$1 # #HB&

0
B@

1
CA E

B

! "
:

(2)

Here #DE, #DB, #HE and #HB are all 3" 3 matrices,
which parameterize possible Lorentz violating terms as
described in [11]. If we suppose the medium of interest
has general magnetic or dielectric properties, then e!r and
e"r are also 3" 3 matrices. In vacuum e!r and e"r are
identity matrices. For experimental tests it is convenient
to further define linear combinations of the # coefficients

%e#e#&jk! 1
2%#DE # #HB&jk;

%e#e$&jk! 1
2%#DE $ #HB&jk$ 1

3$
jk%#DE&ll;

%e#o#&jk! 1
2%#DB # #HE&jk;

%e#o$&jk! 1
2%#DB $ #HE&jk; %e#tr& ! 1

3%#DE&ll:

(3)

The first four of these equations define traceless 3" 3
matrices, while the last defines a single coefficient. All e#
matrices are symmetric except e#o# which is antisymmetric
(odd parity). There are 19 independent coefficients of the #
tensors, which are generally used to quote and compare
experimental results [11–15].

The # tensors in (2) and (3) are frame dependent and
consequently vary as a function of the coordinate system
chosen to analyze a given experiment. In principle they*Electronic address: mike@physics.uwa.edu.au
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V. Alan Kostelecký and Matthew Mewes
Physics Department, Indiana University, Bloomington, Indiana 47405

!Received 20 May 2002; published 23 September 2002"

An investigation is performed of the Lorentz-violating electrodynamics extracted from the renormalizable
sector of the general Lorentz- and CPT-violating standard-model extension. Among the unconventional prop-
erties of radiation arising from Lorentz violation is birefringence of the vacuum. Limits on the dispersion of
light produced by galactic and extragalactic objects provide bounds of 3!10"16 on certain coefficients for
Lorentz violation in the photon sector. The comparative spectral polarimetry of light from cosmologically
distant sources yields stringent constraints of 2!10"32. All remaining coefficients in the photon sector are
measurable in high-sensitivity tests involving cavity-stabilized oscillators. Experimental configurations in
Earth- and space-based laboratories are considered that involve optical or microwave cavities and that could be
implemented using existing technology.

DOI: 10.1103/PhysRevD.66.056005 PACS number!s": 11.30.Cp, 03.30.#p, 12.60."i, 13.40."f

I. INTRODUCTION

Lorentz symmetry underlies the theory of relativity and
all accepted theoretical descriptions of nature at the funda-
mental level. A crucial role in establishing both the rotation
and boost components of Lorentz symmetry has been played
by experimental studies of the properties of light. In the clas-
sic tests, rotation invariance is investigated in Michelson-
Morley experiments searching for anisotropy in the speed of
light, while boost invariance is studied via Kennedy-
Thorndike experiments seeking a variation of the speed of
light with the laboratory velocity #1–3$.
In this work, a theoretical study is performed of various

experiments testing Lorentz symmetry with light and other
electromagnetic radiation. The analysis is within the context
of the Lorentz- and CPT-violating standard-model extension
#4$, developed to allow for small general violations in Lor-
entz and CPT invariance #5$. The Lagrangian of this theory
includes all observer Lorentz scalars formed by combining
standard-model fields with coupling coefficients having Lor-
entz indices. At the level of quantum field theory, the viola-
tions can be regarded as remnants of Planck-scale physics
appearing at attainable energy scales. The coefficients for
Lorentz violation may be related to expectation values of
Lorentz tensors or vectors in an underlying theory #6$. To
date, experimental tests of the standard-model extension
have been performed with hadrons #7–10$, protons and neu-
trons #11$, electrons #12,13$, photons #14,15$, and muons
#16$.
In the present context of studies of electrodynamics, the

standard-model extension is of interest because it provides a
general field-theoretic framework for investigating the Lor-
entz properties of light. The theory contains as a subset a
general Lorentz-violating quantum electrodynamics !QED",
which includes a general Lorentz-violating extension of the
Maxwell equations. We study experiments that can measure
the coefficients for Lorentz violation in this generalized elec-
trodynamics. Our attention is restricted here to exceptionally
sensitive experiments that could be in a position to detect the
minuscule effects motivating the standard-model extension.
A basic feature of Lorentz-violating electrodynamics is

the birefringence of light propagating in vacuo. This results
in several potentially observable effects, including pulse dis-
persion and polarization changes. One goal of this work is to
consider the implications of these effects for the propagation
of radiation on astrophysical scales. We use available obser-
vations to constrain certain coefficients for Lorentz violation.
Another goal of this work is to analyze modern versions

of some classic tests of special relativity based on resonant-
cavity oscillators #17–19$, which have extreme sensitivity to
the properties of electromagnetic fields. These experiments
depend on the Earth’s sidereal and orbital motion. However,
the advent of the International Space Station !ISS" makes it
feasible to perform laboratory experiments in space, where
the orbital motion can yield different sensitivity to Lorentz-
violating effects #20$. We consider here both space- and
Earth-based laboratory experiments with resonant cavities.
The structural outline of this paper is as follows. Section

II presents some basic results and definitions for the general
Lorentz-violating electrodynamics and outlines the connec-
tion to some test models. We then consider birefringence
experiments, beginning in Sec. III A with some general is-
sues. Constraints stemming from the resulting effects on
pulse dispersion from astrophysical sources are addressed in
Sec. III B, while those from polarization changes over cos-
mological scales are treated in Sec. III C. A general analysis
for laboratory-based experiments on the Earth and in space is
presented in Sec. IV A. Sections IV B and IV C apply this
analysis to experiments with optical and microwave resonant
cavities. We summarize in Sec. V. Throughout this work, we
adopt the conventions of Ref. #4$.

II. LORENTZ-VIOLATING ELECTRODYNAMICS

This section provides some background and contextual
information about the general Lorentz-violating electrody-
namics. The basic formalism is presented, and some defini-
tions used in later sections are introduced. We also discuss
the connection between this theory and some test models for
Lorentz violation.
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where E! and B! are the electric and magnetic fields obtained
from solving the modified Maxwell equations !2". The 3
!3 matrices #DE , #HB , #DB , and #HE are defined by

!#DE" jk"#2!kF"0 j0k,

!#HB" jk"
1
2 $ jpq$krs!kF"pqrs,

!#DB" jk"#!#HE"k j"!kF"0 jpq$kpq.
!5"

The double-trace condition on (kF)#%&' translates to the
tracelessness of (#DE$#HB), while (kF)#[%&']"0 implies
the tracelessness of #DB"#(#HE)T. This leaves #DE and
#HB with eleven independent elements and the matrix #DB
"#(#HE)T with eight, which together represent the 19 in-
dependent components of kF . Note also that #DE and #HB
are parity even, while #DB"#(#HE)T is parity odd.
With these definitions, the modified Maxwell equations

!2", !3" take the familiar form

(! !H! #)0D! "0, (! •D! "0,

(! !E! $)0B! "0, (! •B! "0. !6"

As a consequence, many results from conventional electro-
dynamics in anisotropic media also hold for this Lorentz-
violating theory. For example, the energy-momentum tensor
takes the standard form in terms of E! , B! , D! and H! . This
implies the usual Poynting theorem, which can be applied in
conjunction with the symmetries of the matrices in Eq. !4" to
show that the vacuum is lossless.
For the applications to be addressed in later sections, it is

convenient to introduce the following decomposition of
(kF)#%&' coefficients:

! #̃e$" jk"
1
2 !#DE$#HB" jk,

! #̃e#" jk"
1
2 !#DE##HB" jk#

1
3 * jk!#DE" ll,

! #̃o$" jk"
1
2 !#DB$#HE" jk,

! #̃o#" jk"
1
2 !#DB##HE" jk,

#̃ tr"
1
3 !#DE" ll. !7"

The first four of these equations define traceless 3!3 matri-
ces, while the last defines a single coefficient. All parity-even
coefficients are contained in #̃e$ , #̃e# and #̃ tr , while all
parity-odd coefficients are in #̃o$ and #̃o# . The matrix #̃o$

is antisymmetric while the other three are symmetric.

The form of this decomposition helps in determining the
portion of the parameter space to which experiments are sen-
sitive and how different experiments might overlap. For ex-
ample, typical laboratory experiments with electromagnetic
cavities search for rotation-violating parity-even observables.
The sensitivity of such experiments is therefore expected to
be dominantly to the ten rotation-violating parity-even coef-
ficients #̃e$ and #̃e# . For those observables depending at
leading order on the velocity, the eight coefficients #̃o$ and
#̃o# can be expected to play a role. Finally, at second order
in the velocity one can expect the sole rotation-invariant
quantity #̃ tr to affect measurements. These considerations are
confirmed by the results of the detailed analysis in the sec-
tions below.
As another example of the use of the decomposition !7",

recall that birefringence is known to depend on ten linearly
independent combinations of the components of kF , which
can be chosen as +15,

ka"+!kF"0213, !kF"0123, !kF"0202#!kF"1313,

!kF"0303#!kF"1212, !kF"0102$!kF"1323,

!kF"0103#!kF"1223, !kF"0203$!kF"1213,

!kF"0112$!kF"0323, !kF"0113#!kF"0223,

!kF"0212#!kF"0313]. !8"

Relating these to the #̃ matrices, we find

! #̃e$" jk"#! #!k3$k4" k5 k6

k5 k3 k7

k6 k7 k4
" ,

! #̃o#" jk"! 2k2 #k9 k8

#k9 #2k1 k10

k8 k10 2!k1#k2"
" . !9"

In this way, we can see directly that birefringence is con-
trolled by the matrices #̃e$ and #̃o# .
In terms of the # matrices defined in Eq. !5", and assum-

ing as before that (kAF)-"0, the Lagrangian !1" becomes

L"
1
2 !E! 2#B! 2"$

1
2E

! •!#DE"•E! #
1
2B

! •!#HB"•B!

$E! •!#DB"•B! . !10"

Similarly, using instead the #̃ matrices defined in Eq. !7", we
find

L"
1
2 +!1$#̃ tr"E! 2#!1##̃ tr"B! 2,$

1
2E

! •! #̃e$$#̃e#"•E!

#
1
2B

! •! #̃e$##̃e#"•B! $E! •! #̃o$$#̃o#"•B! . !11"
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A. Basic theory

The standard model of particle physics is believed to be
the low-energy limit of a fundamental theory that includes all
the forces in nature. The natural scale of this fundamental
theory is likely to be determined by the Planck mass. The
possibility that Lorentz- and CPT-violating signals from this
theory may be observable at energies attainable today led to
the development of the standard-model extension !4", which
is a general theory based on the standard model but allowing
for violations of Lorentz and CPT symmetry !5". The addi-
tional terms must be small because the usual standard model
agrees well with experiment. They may originate from spon-
taneous symmetry breaking in the fundamental theory !6".
The standard-model extension can be defined as the usual

standard-model Lagrangian plus all possible additional
Lorentz- and CPT-violating terms involving standard-model
fields that maintain invariance under Lorentz transformations
of the observer’s inertial frame. This invariance ensures that
the physics is independent of the choice of coordinates. The
Lorentz violation is associated with rotations and boosts of
particles or localized field configurations in a fixed observer
inertial frame.
Many of the detailed investigations of the standard-model

extension have been performed under the simplifying as-
sumption that the additional Lorentz- and CPT-violating
terms preserve the SU(3)!SU(2)!U(1) local gauge sym-
metry of the usual standard model. Another widely adopted
simplifying assumption is that the coefficients for Lorentz
violation are independent of position. This implies the viola-
tion is restricted to the Lorentz symmetry instead of the full
Poincaré symmetry and has several useful consequences for
experiment, including the conservation of energy and mo-
mentum. It is also often convenient to restrict attention to the
renormalizable sector of the theory, since this is expected to
dominate the physics at low energies. However, nonrenor-
malizable terms are known to play an important role at
higher energies !21".
Extracting terms involving the photon fields from the

standard-model extension yields a Lorentz- and
CPT-violating extension of QED !4". The fermion sector of
this theory has been widely studied. Here, we focus attention
on the pure-photon sector and limit attention to the renormal-
izable terms, which involve operators of mass dimension
four or less. The relevant Lagrangian is !4"

L"#
1
4 F#$F#$$

1
2 %kAF&'(')#$A)F#$

#
1
4 %kF&')#$F')F#$, %1&

where F#$*+#A$#+$A# . This theory maintains the usual
U%1& gauge invariance under the transformations qA#
→qA#$+#, . The Lagrangian contains the standard Max-
well term and two additional Lorentz-violating terms. The
first of these extra terms is CPT odd, and its coefficient
(kAF)' has dimensions of mass. The other is CPT even. Its
coefficient (kF)')#$ is dimensionless and has the symmetries

of the Riemann tensor and a vanishing double trace, which
implies a total of 19 independent components.
The CPT-odd term has received much attention in the

literature !22". This term provides negative contributions to
the canonical energy and therefore is a potential source of
instability. One solution is to set the coefficient to zero,
(kAF)'"0. This is theoretically consistent with radiative
corrections in the standard-model extension and is well sup-
ported experimentally: stringent constraints on kAF have
been set by studying the polarization of radiation from dis-
tant radio galaxies !14".
In contrast, much less is known about the CPT-even co-

efficient kF . Theoretical studies show that it provides posi-
tive contributions to the canonical energy and that it is radia-
tively induced from the fermion sector in the standard-model
extension !4,23". Constraints on some components have re-
cently been obtained from optical spectropolarimetry of cos-
mologically distant sources !15". In the present work, we
focus on the experimental implications of this CPT-even
term. The coefficient (kAF)' is set to zero for the analysis.
The equations of motion from Lagrangian %1& are

+-F#
-$%kF&#-./+-F./"0. %2&

These are modified source-free inhomogeneous Maxwell
equations. The homogeneous Maxwell equations,

+#F̃#$*
1
2 (#$')+#F')"0, %3&

remain unchanged.
Although it lies beyond our present scope, the techniques

presented here and the results obtained can be generalized to
the nonrenormalizable sector. The nonrenormalizable terms
can be classified according to their mass dimension. The di-
mensions of the corresponding coefficients are inverse pow-
ers of mass, and it is plausible that these coefficients are
suppressed by corresponding powers of the Planck scale.
Terms of this type appear in various special Lorentz-
violating theories, including noncommutative field theories
incorporating QED !24". Indeed, any coordinate-independent
theory with a photon sector containing nonrenormalizable
Lorentz-violating terms must be a subset of the standard-
model extension. It would be interesting to provide a detailed
study of the nonrenormalizable terms in the Lorentz-
violating electrodynamics and their experimental signals.

B. Analogy and definitions

A useful analogy exists between the Lorentz-violating
electrodynamics in vacuo and the conventional situation in
homogeneous anisotropic media !4". The idea is to define
fields D! and H! by the six-dimensional matrix equation

! D!
H!
" "! 1$'DE 'DB

'HE 1$'HB
" ! E!
B!
" , %4&
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I. INTRODUCTION

The postulate of Lorentz invariance (LI) is at the heart of
special and general relativity and therefore one of the
cornerstones of modern physics. The central importance
of this postulate has motivated tremendous work to experi-
mentally test LI with ever increasing precision [1].
Additionally, many unification theories (e.g., string theory
or loop gravity) are expected to violate LI at some level,
[2–4] which further motivates experimental searches for
such violations.

Numerous test theories that allow the modelling and
interpretation of experiments that test LI have been devel-
oped. Kinematical frameworks [5,6] postulate a simple
parameterization of the Lorentz transformations with ex-
periments setting limits on the deviation of those parame-
ters from their values in special relativity. A more
fundamental approach is offered by theories that parame-
terize the coupling between gravitational and nongravita-
tional fields (e.g., TH!" formalisms [1,7]). Formalisms
based on string theory [2,3] have the advantage of being
well motivated by theories of physics that are at present
good candidates for a unification of gravity and the other
fundamental forces of nature. Fairly recently a general
Lorentz violating extension of the standard model of par-
ticle physics (standard model extension, SME) has been
developed [8–10] whose Lagrangian includes all parame-
terized Lorentz violating terms that can be formed from
known fields. Many of the theories mentioned above are
included as special cases of the SME [11,12]. In this paper
we restrict our attention to the photon sector of the SME.
Within this framework we analyze past experiments that
can be shown to set limits on SME parameters that have not
been determined previously, and propose new experiments
that could significantly improve those limits.

As shown in [11] the photon sector of the SME can be
expressed in the form of modified source free Maxwell

equations, which take their familiar form

r:D ! 0; (1a)

r:B ! 0; (1b)

r"E# @tB ! 0; (1c)

r"H$ @tD ! 0; (1d)

but with modified definitions of D and H

D
H

! "
!

!0%e!r # #DE&
#####
!0
"0

q
#DB#####

!0
"0

q
#HE "$1

0 % e"r
$1 # #HB&

0
B@

1
CA E

B

! "
:

(2)

Here #DE, #DB, #HE and #HB are all 3" 3 matrices,
which parameterize possible Lorentz violating terms as
described in [11]. If we suppose the medium of interest
has general magnetic or dielectric properties, then e!r and
e"r are also 3" 3 matrices. In vacuum e!r and e"r are
identity matrices. For experimental tests it is convenient
to further define linear combinations of the # coefficients

%e#e#&jk! 1
2%#DE # #HB&jk;

%e#e$&jk! 1
2%#DE $ #HB&jk$ 1

3$
jk%#DE&ll;

%e#o#&jk! 1
2%#DB # #HE&jk;

%e#o$&jk! 1
2%#DB $ #HE&jk; %e#tr& ! 1

3%#DE&ll:

(3)

The first four of these equations define traceless 3" 3
matrices, while the last defines a single coefficient. All e#
matrices are symmetric except e#o# which is antisymmetric
(odd parity). There are 19 independent coefficients of the #
tensors, which are generally used to quote and compare
experimental results [11–15].

The # tensors in (2) and (3) are frame dependent and
consequently vary as a function of the coordinate system
chosen to analyze a given experiment. In principle they*Electronic address: mike@physics.uwa.edu.au
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ticle physics (standard model extension, SME) has been
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terized Lorentz violating terms that can be formed from
known fields. Many of the theories mentioned above are
included as special cases of the SME [11,12]. In this paper
we restrict our attention to the photon sector of the SME.
Within this framework we analyze past experiments that
can be shown to set limits on SME parameters that have not
been determined previously, and propose new experiments
that could significantly improve those limits.

As shown in [11] the photon sector of the SME can be
expressed in the form of modified source free Maxwell
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described in [11]. If we suppose the medium of interest
has general magnetic or dielectric properties, then e!r and
e"r are also 3" 3 matrices. In vacuum e!r and e"r are
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to further define linear combinations of the # coefficients
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The first four of these equations define traceless 3" 3
matrices, while the last defines a single coefficient. All e#
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tensors, which are generally used to quote and compare
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assume a(t) = a0 cos(!at). Note that all terms containing
ga�� are sometimes presented with the opposite sign, but
has no impact on this work as both representation are
correct.

By substituting the following vector identities, ~B·~ra =
~r · a ~B + a(~r · ~B) and ~ra ⇥ ~E = (~r⇥ a ~E) � a(~r⇥ ~E)
along with (5) and (6), into equations (3) and (4), the
modified Gauss’ and Ampere’s Law become

✏r
~r · ~E =

⇢f

✏0
+ ga��c

~r · (a ~B), (7)

~r⇥ ~B

µr

=
✏r

c2

@ ~E

@t
+ µ0

~Jf � ga��

c

 
@(a ~B)

@t
+ ~r⇥ (a ~E)

!
,

(8)

which is a more convenient and consistent way of ex-
pressing modified axion electrodynamics. In general, it is
better to represent the photon-axion interaction term as
the product of the axion scalar amplitude, a(t,~r), multi-
plied by either the applied ~E-field or the applied ~B-field.
This is similar to the form of the equations in [14], but
without the magnetic monopole duality. Moreover, this
representation directly satisfies Faraday’s Law (Eqn..(5))
and ~r · ~B = 0 (Eqn.(6)). The former representation,
Eqns. (3)-(6) may lead to confusion, with Faraday’s Law
seemingly sometimes only approximately satisfied when
the applied field ~E has been set to zero. This is because
the last term in Eqn.(4), actually has a term that de-
pends on the time derivative of the ~B field. With further
manipulation one can show that the modified Maxwell’s
equations maintain a similar form to the non-modified
equations, given by

~r · ~Da = ⇢f , (9)

~r⇥ ~Ha = ~Jf +
@ ~Da

@t
, (10)

~r · ~B = 0, (11)

~r⇥ ~E = �@ ~B

@t
, (12)

with the constitutive relations redefined as

~Da = ~D + ~Pa = ✏0✏r
~E � ga��a

r
✏0

µ0

~B, (13)

~Ha = ~H � ~Ma =
1

µ0µr

~B + ga��a

r
✏0

µ0

~E. (14)

Here ~D is the usual electric flux density (or ~D-field), ~H

the usual magnetic field intensity (or ~H-field), with ~Da

and ~Ha the modified definitions of these fields that sat-
isfy the equations (9) to (12) due to the additional axion
polarization, ~Pa and axion magnetization ~Ma (which we
will shortly define).

This is a similar approach to that which is adopted
when deriving modified Maxwell’s equations for the pho-
ton sector Standard Model Extension (SME)[15], which

includes in the Lagrangian all possible Lorentz invari-
ance violations. By comparison to SME modified elec-
trodynamics, it is apparent that ga��a is similar to an
oscillating odd-parity Lorentz invariance violation, DB

or HE . This type of Lorentz invariance violation is dis-
cussed in detail in [16] and is also presented in SI units
in this work.
With the modification defined thusly, it is straightfor-

ward to show that the continuity equation is satisfied.
From equations (7) and (8) we may define

⇢a = ga��

r
✏0

µ0

~r · (a ~B), (15)

~Ja = �ga��

r
✏0

µ0

@(a ~B)

@t
. (16)

In the situation where there are no free charges or free
conducting electrons, we interpret ⇢a as a vacuum bound
charge and ~Ja as a polarization current. Taking the time
derivative of Eqn.(15) and the divergence of Eqn. (16)
we obtain

r · ~Ja = �@⇢a

@t
, (17)

demonstrating that the continuity equation is satisfied.
This means we may interpret the e↵ective current den-
sity, ~Ja, due to the displacement of e↵ective bound
charge, ⇢a, as an oscillating vacuum polarization Pa given
by;

~Ja =
@ ~Pa

@t
; ~Pa = �ga��

r
✏0

µ0
a ~B. (18)

In general, the total displacement current is defined by

~JDa =
@ ~Da

@t
= ✏0✏r

@ ~E

@t
� ga��

r
✏0

µ0

@(a ~B)

@t
. (19)

Note, there is also an axion bound current associated
with the induced magnetization given by;

~Jba = ~r⇥ ~Ma = �ga��

r
✏0

µ0

~r⇥ (a ~E) (20)

Since the axion modifications are in the source terms
it is instructive to think of the oscillating bound charges
and currents as providing oscillations in the magnetiza-
tion and polarization of the vacuum, in a similar way that
free electron charge and spin cause vacuum polarization
(due to electric screening) and vacuum magnetization
(due to magnetic anti-screening), which also causes ”run-
ning” of the fine structure constant at high energies and
small distance scales [17, 18]. Thus, the oscillating mag-
netization and polarization could be interpreted as an
oscillation of the fine structure constant, ↵ (i.e. Eqn.(1)
shows axion-photon coupling is proportional to ↵), or
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pends on the time derivative of the ~B field. With further
manipulation one can show that the modified Maxwell’s
equations maintain a similar form to the non-modified
equations, given by

~r · ~Da = ⇢f , (9)

~r⇥ ~Ha = ~Jf +
@ ~Da

@t
, (10)

~r · ~B = 0, (11)

~r⇥ ~E = �@ ~B

@t
, (12)

with the constitutive relations redefined as

~Da = ~D + ~Pa = ✏0✏r
~E � ga��a

r
✏0

µ0

~B, (13)

~Ha = ~H � ~Ma =
1

µ0µr

~B + ga��a

r
✏0

µ0

~E. (14)

Here ~D is the usual electric flux density (or ~D-field), ~H

the usual magnetic field intensity (or ~H-field), with ~Da

and ~Ha the modified definitions of these fields that sat-
isfy the equations (9) to (12) due to the additional axion
polarization, ~Pa and axion magnetization ~Ma (which we
will shortly define).

This is a similar approach to that which is adopted
when deriving modified Maxwell’s equations for the pho-
ton sector Standard Model Extension (SME)[15], which

includes in the Lagrangian all possible Lorentz invari-
ance violations. By comparison to SME modified elec-
trodynamics, it is apparent that ga��a is similar to an
oscillating odd-parity Lorentz invariance violation, DB

or HE . This type of Lorentz invariance violation is dis-
cussed in detail in [16] and is also presented in SI units
in this work.
With the modification defined thusly, it is straightfor-

ward to show that the continuity equation is satisfied.
From equations (7) and (8) we may define

⇢a = ga��

r
✏0

µ0

~r · (a ~B), (15)

~Ja = �ga��

r
✏0

µ0

@(a ~B)

@t
. (16)

In the situation where there are no free charges or free
conducting electrons, we interpret ⇢a as a vacuum bound
charge and ~Ja as a polarization current. Taking the time
derivative of Eqn.(15) and the divergence of Eqn. (16)
we obtain

r · ~Ja = �@⇢a

@t
, (17)

demonstrating that the continuity equation is satisfied.
This means we may interpret the e↵ective current den-
sity, ~Ja, due to the displacement of e↵ective bound
charge, ⇢a, as an oscillating vacuum polarization Pa given
by;

~Ja =
@ ~Pa

@t
; ~Pa = �ga��

r
✏0

µ0
a ~B. (18)

In general, the total displacement current is defined by

~JDa =
@ ~Da

@t
= ✏0✏r

@ ~E

@t
� ga��

r
✏0

µ0

@(a ~B)

@t
. (19)

Note, there is also an axion bound current associated
with the induced magnetization given by;

~Jba = ~r⇥ ~Ma = �ga��

r
✏0

µ0

~r⇥ (a ~E) (20)

Since the axion modifications are in the source terms
it is instructive to think of the oscillating bound charges
and currents as providing oscillations in the magnetiza-
tion and polarization of the vacuum, in a similar way that
free electron charge and spin cause vacuum polarization
(due to electric screening) and vacuum magnetization
(due to magnetic anti-screening), which also causes ”run-
ning” of the fine structure constant at high energies and
small distance scales [17, 18]. Thus, the oscillating mag-
netization and polarization could be interpreted as an
oscillation of the fine structure constant, ↵ (i.e. Eqn.(1)
shows axion-photon coupling is proportional to ↵), or

2

assume a(t) = a0 cos(!at). Note that all terms containing
ga�� are sometimes presented with the opposite sign, but
has no impact on this work as both representation are
correct.

By substituting the following vector identities, ~B·~ra =
~r · a ~B + a(~r · ~B) and ~ra ⇥ ~E = (~r⇥ a ~E) � a(~r⇥ ~E)
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✏0
+ ga��c

~r · (a ~B), (7)

~r⇥ ~B

µr

=
✏r

c2

@ ~E

@t
+ µ0

~Jf � ga��

c

 
@(a ~B)

@t
+ ~r⇥ (a ~E)

!
,

(8)

which is a more convenient and consistent way of ex-
pressing modified axion electrodynamics. In general, it is
better to represent the photon-axion interaction term as
the product of the axion scalar amplitude, a(t,~r), multi-
plied by either the applied ~E-field or the applied ~B-field.
This is similar to the form of the equations in [14], but
without the magnetic monopole duality. Moreover, this
representation directly satisfies Faraday’s Law (Eqn..(5))
and ~r · ~B = 0 (Eqn.(6)). The former representation,
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seemingly sometimes only approximately satisfied when
the applied field ~E has been set to zero. This is because
the last term in Eqn.(4), actually has a term that de-
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polarization, ~Pa and axion magnetization ~Ma (which we
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In the situation where there are no free charges or free
conducting electrons, we interpret ⇢a as a vacuum bound
charge and ~Ja as a polarization current. Taking the time
derivative of Eqn.(15) and the divergence of Eqn. (16)
we obtain
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demonstrating that the continuity equation is satisfied.
This means we may interpret the e↵ective current den-
sity, ~Ja, due to the displacement of e↵ective bound
charge, ⇢a, as an oscillating vacuum polarization Pa given
by;
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Note, there is also an axion bound current associated
with the induced magnetization given by;

~Jba = ~r⇥ ~Ma = �ga��

r
✏0

µ0

~r⇥ (a ~E) (20)

Since the axion modifications are in the source terms
it is instructive to think of the oscillating bound charges
and currents as providing oscillations in the magnetiza-
tion and polarization of the vacuum, in a similar way that
free electron charge and spin cause vacuum polarization
(due to electric screening) and vacuum magnetization
(due to magnetic anti-screening), which also causes ”run-
ning” of the fine structure constant at high energies and
small distance scales [17, 18]. Thus, the oscillating mag-
netization and polarization could be interpreted as an
oscillation of the fine structure constant, ↵ (i.e. Eqn.(1)
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An investigation is performed of the Lorentz-violating electrodynamics extracted from the renormalizable
sector of the general Lorentz- and CPT-violating standard-model extension. Among the unconventional prop-
erties of radiation arising from Lorentz violation is birefringence of the vacuum. Limits on the dispersion of
light produced by galactic and extragalactic objects provide bounds of 3!10"16 on certain coefficients for
Lorentz violation in the photon sector. The comparative spectral polarimetry of light from cosmologically
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implemented using existing technology.
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I. INTRODUCTION

Lorentz symmetry underlies the theory of relativity and
all accepted theoretical descriptions of nature at the funda-
mental level. A crucial role in establishing both the rotation
and boost components of Lorentz symmetry has been played
by experimental studies of the properties of light. In the clas-
sic tests, rotation invariance is investigated in Michelson-
Morley experiments searching for anisotropy in the speed of
light, while boost invariance is studied via Kennedy-
Thorndike experiments seeking a variation of the speed of
light with the laboratory velocity #1–3$.
In this work, a theoretical study is performed of various

experiments testing Lorentz symmetry with light and other
electromagnetic radiation. The analysis is within the context
of the Lorentz- and CPT-violating standard-model extension
#4$, developed to allow for small general violations in Lor-
entz and CPT invariance #5$. The Lagrangian of this theory
includes all observer Lorentz scalars formed by combining
standard-model fields with coupling coefficients having Lor-
entz indices. At the level of quantum field theory, the viola-
tions can be regarded as remnants of Planck-scale physics
appearing at attainable energy scales. The coefficients for
Lorentz violation may be related to expectation values of
Lorentz tensors or vectors in an underlying theory #6$. To
date, experimental tests of the standard-model extension
have been performed with hadrons #7–10$, protons and neu-
trons #11$, electrons #12,13$, photons #14,15$, and muons
#16$.
In the present context of studies of electrodynamics, the

standard-model extension is of interest because it provides a
general field-theoretic framework for investigating the Lor-
entz properties of light. The theory contains as a subset a
general Lorentz-violating quantum electrodynamics !QED",
which includes a general Lorentz-violating extension of the
Maxwell equations. We study experiments that can measure
the coefficients for Lorentz violation in this generalized elec-
trodynamics. Our attention is restricted here to exceptionally
sensitive experiments that could be in a position to detect the
minuscule effects motivating the standard-model extension.
A basic feature of Lorentz-violating electrodynamics is

the birefringence of light propagating in vacuo. This results
in several potentially observable effects, including pulse dis-
persion and polarization changes. One goal of this work is to
consider the implications of these effects for the propagation
of radiation on astrophysical scales. We use available obser-
vations to constrain certain coefficients for Lorentz violation.
Another goal of this work is to analyze modern versions

of some classic tests of special relativity based on resonant-
cavity oscillators #17–19$, which have extreme sensitivity to
the properties of electromagnetic fields. These experiments
depend on the Earth’s sidereal and orbital motion. However,
the advent of the International Space Station !ISS" makes it
feasible to perform laboratory experiments in space, where
the orbital motion can yield different sensitivity to Lorentz-
violating effects #20$. We consider here both space- and
Earth-based laboratory experiments with resonant cavities.
The structural outline of this paper is as follows. Section

II presents some basic results and definitions for the general
Lorentz-violating electrodynamics and outlines the connec-
tion to some test models. We then consider birefringence
experiments, beginning in Sec. III A with some general is-
sues. Constraints stemming from the resulting effects on
pulse dispersion from astrophysical sources are addressed in
Sec. III B, while those from polarization changes over cos-
mological scales are treated in Sec. III C. A general analysis
for laboratory-based experiments on the Earth and in space is
presented in Sec. IV A. Sections IV B and IV C apply this
analysis to experiments with optical and microwave resonant
cavities. We summarize in Sec. V. Throughout this work, we
adopt the conventions of Ref. #4$.

II. LORENTZ-VIOLATING ELECTRODYNAMICS

This section provides some background and contextual
information about the general Lorentz-violating electrody-
namics. The basic formalism is presented, and some defini-
tions used in later sections are introduced. We also discuss
the connection between this theory and some test models for
Lorentz violation.
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where E! and B! are the electric and magnetic fields obtained
from solving the modified Maxwell equations !2". The 3
!3 matrices #DE , #HB , #DB , and #HE are defined by

!#DE" jk"#2!kF"0 j0k,

!#HB" jk"
1
2 $ jpq$krs!kF"pqrs,

!#DB" jk"#!#HE"k j"!kF"0 jpq$kpq.
!5"

The double-trace condition on (kF)#%&' translates to the
tracelessness of (#DE$#HB), while (kF)#[%&']"0 implies
the tracelessness of #DB"#(#HE)T. This leaves #DE and
#HB with eleven independent elements and the matrix #DB
"#(#HE)T with eight, which together represent the 19 in-
dependent components of kF . Note also that #DE and #HB
are parity even, while #DB"#(#HE)T is parity odd.
With these definitions, the modified Maxwell equations

!2", !3" take the familiar form

(! !H! #)0D! "0, (! •D! "0,

(! !E! $)0B! "0, (! •B! "0. !6"

As a consequence, many results from conventional electro-
dynamics in anisotropic media also hold for this Lorentz-
violating theory. For example, the energy-momentum tensor
takes the standard form in terms of E! , B! , D! and H! . This
implies the usual Poynting theorem, which can be applied in
conjunction with the symmetries of the matrices in Eq. !4" to
show that the vacuum is lossless.
For the applications to be addressed in later sections, it is

convenient to introduce the following decomposition of
(kF)#%&' coefficients:

! #̃e$" jk"
1
2 !#DE$#HB" jk,

! #̃e#" jk"
1
2 !#DE##HB" jk#

1
3 * jk!#DE" ll,

! #̃o$" jk"
1
2 !#DB$#HE" jk,

! #̃o#" jk"
1
2 !#DB##HE" jk,

#̃ tr"
1
3 !#DE" ll. !7"

The first four of these equations define traceless 3!3 matri-
ces, while the last defines a single coefficient. All parity-even
coefficients are contained in #̃e$ , #̃e# and #̃ tr , while all
parity-odd coefficients are in #̃o$ and #̃o# . The matrix #̃o$

is antisymmetric while the other three are symmetric.

The form of this decomposition helps in determining the
portion of the parameter space to which experiments are sen-
sitive and how different experiments might overlap. For ex-
ample, typical laboratory experiments with electromagnetic
cavities search for rotation-violating parity-even observables.
The sensitivity of such experiments is therefore expected to
be dominantly to the ten rotation-violating parity-even coef-
ficients #̃e$ and #̃e# . For those observables depending at
leading order on the velocity, the eight coefficients #̃o$ and
#̃o# can be expected to play a role. Finally, at second order
in the velocity one can expect the sole rotation-invariant
quantity #̃ tr to affect measurements. These considerations are
confirmed by the results of the detailed analysis in the sec-
tions below.
As another example of the use of the decomposition !7",

recall that birefringence is known to depend on ten linearly
independent combinations of the components of kF , which
can be chosen as +15,

ka"+!kF"0213, !kF"0123, !kF"0202#!kF"1313,

!kF"0303#!kF"1212, !kF"0102$!kF"1323,

!kF"0103#!kF"1223, !kF"0203$!kF"1213,

!kF"0112$!kF"0323, !kF"0113#!kF"0223,

!kF"0212#!kF"0313]. !8"

Relating these to the #̃ matrices, we find

! #̃e$" jk"#! #!k3$k4" k5 k6

k5 k3 k7

k6 k7 k4
" ,

! #̃o#" jk"! 2k2 #k9 k8

#k9 #2k1 k10

k8 k10 2!k1#k2"
" . !9"

In this way, we can see directly that birefringence is con-
trolled by the matrices #̃e$ and #̃o# .
In terms of the # matrices defined in Eq. !5", and assum-

ing as before that (kAF)-"0, the Lagrangian !1" becomes

L"
1
2 !E! 2#B! 2"$

1
2E

! •!#DE"•E! #
1
2B

! •!#HB"•B!

$E! •!#DB"•B! . !10"

Similarly, using instead the #̃ matrices defined in Eq. !7", we
find

L"
1
2 +!1$#̃ tr"E! 2#!1##̃ tr"B! 2,$

1
2E

! •! #̃e$$#̃e#"•E!

#
1
2B

! •! #̃e$##̃e#"•B! $E! •! #̃o$$#̃o#"•B! . !11"
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A. Basic theory

The standard model of particle physics is believed to be
the low-energy limit of a fundamental theory that includes all
the forces in nature. The natural scale of this fundamental
theory is likely to be determined by the Planck mass. The
possibility that Lorentz- and CPT-violating signals from this
theory may be observable at energies attainable today led to
the development of the standard-model extension !4", which
is a general theory based on the standard model but allowing
for violations of Lorentz and CPT symmetry !5". The addi-
tional terms must be small because the usual standard model
agrees well with experiment. They may originate from spon-
taneous symmetry breaking in the fundamental theory !6".
The standard-model extension can be defined as the usual

standard-model Lagrangian plus all possible additional
Lorentz- and CPT-violating terms involving standard-model
fields that maintain invariance under Lorentz transformations
of the observer’s inertial frame. This invariance ensures that
the physics is independent of the choice of coordinates. The
Lorentz violation is associated with rotations and boosts of
particles or localized field configurations in a fixed observer
inertial frame.
Many of the detailed investigations of the standard-model

extension have been performed under the simplifying as-
sumption that the additional Lorentz- and CPT-violating
terms preserve the SU(3)!SU(2)!U(1) local gauge sym-
metry of the usual standard model. Another widely adopted
simplifying assumption is that the coefficients for Lorentz
violation are independent of position. This implies the viola-
tion is restricted to the Lorentz symmetry instead of the full
Poincaré symmetry and has several useful consequences for
experiment, including the conservation of energy and mo-
mentum. It is also often convenient to restrict attention to the
renormalizable sector of the theory, since this is expected to
dominate the physics at low energies. However, nonrenor-
malizable terms are known to play an important role at
higher energies !21".
Extracting terms involving the photon fields from the

standard-model extension yields a Lorentz- and
CPT-violating extension of QED !4". The fermion sector of
this theory has been widely studied. Here, we focus attention
on the pure-photon sector and limit attention to the renormal-
izable terms, which involve operators of mass dimension
four or less. The relevant Lagrangian is !4"

L"#
1
4 F#$F#$$

1
2 %kAF&'(')#$A)F#$

#
1
4 %kF&')#$F')F#$, %1&

where F#$*+#A$#+$A# . This theory maintains the usual
U%1& gauge invariance under the transformations qA#
→qA#$+#, . The Lagrangian contains the standard Max-
well term and two additional Lorentz-violating terms. The
first of these extra terms is CPT odd, and its coefficient
(kAF)' has dimensions of mass. The other is CPT even. Its
coefficient (kF)')#$ is dimensionless and has the symmetries

of the Riemann tensor and a vanishing double trace, which
implies a total of 19 independent components.
The CPT-odd term has received much attention in the

literature !22". This term provides negative contributions to
the canonical energy and therefore is a potential source of
instability. One solution is to set the coefficient to zero,
(kAF)'"0. This is theoretically consistent with radiative
corrections in the standard-model extension and is well sup-
ported experimentally: stringent constraints on kAF have
been set by studying the polarization of radiation from dis-
tant radio galaxies !14".
In contrast, much less is known about the CPT-even co-

efficient kF . Theoretical studies show that it provides posi-
tive contributions to the canonical energy and that it is radia-
tively induced from the fermion sector in the standard-model
extension !4,23". Constraints on some components have re-
cently been obtained from optical spectropolarimetry of cos-
mologically distant sources !15". In the present work, we
focus on the experimental implications of this CPT-even
term. The coefficient (kAF)' is set to zero for the analysis.
The equations of motion from Lagrangian %1& are

+-F#
-$%kF&#-./+-F./"0. %2&

These are modified source-free inhomogeneous Maxwell
equations. The homogeneous Maxwell equations,

+#F̃#$*
1
2 (#$')+#F')"0, %3&

remain unchanged.
Although it lies beyond our present scope, the techniques

presented here and the results obtained can be generalized to
the nonrenormalizable sector. The nonrenormalizable terms
can be classified according to their mass dimension. The di-
mensions of the corresponding coefficients are inverse pow-
ers of mass, and it is plausible that these coefficients are
suppressed by corresponding powers of the Planck scale.
Terms of this type appear in various special Lorentz-
violating theories, including noncommutative field theories
incorporating QED !24". Indeed, any coordinate-independent
theory with a photon sector containing nonrenormalizable
Lorentz-violating terms must be a subset of the standard-
model extension. It would be interesting to provide a detailed
study of the nonrenormalizable terms in the Lorentz-
violating electrodynamics and their experimental signals.

B. Analogy and definitions

A useful analogy exists between the Lorentz-violating
electrodynamics in vacuo and the conventional situation in
homogeneous anisotropic media !4". The idea is to define
fields D! and H! by the six-dimensional matrix equation

! D!
H!
" "! 1$'DE 'DB

'HE 1$'HB
" ! E!
B!
" , %4&
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wave resonators to improve the sensitivity. With present technology we estimate that the scalar and parity-
odd coefficients may be measured with a sensitivity better than parts in 1011 and 1015 respectively.
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I. INTRODUCTION

The postulate of Lorentz invariance (LI) is at the heart of
special and general relativity and therefore one of the
cornerstones of modern physics. The central importance
of this postulate has motivated tremendous work to experi-
mentally test LI with ever increasing precision [1].
Additionally, many unification theories (e.g., string theory
or loop gravity) are expected to violate LI at some level,
[2–4] which further motivates experimental searches for
such violations.

Numerous test theories that allow the modelling and
interpretation of experiments that test LI have been devel-
oped. Kinematical frameworks [5,6] postulate a simple
parameterization of the Lorentz transformations with ex-
periments setting limits on the deviation of those parame-
ters from their values in special relativity. A more
fundamental approach is offered by theories that parame-
terize the coupling between gravitational and nongravita-
tional fields (e.g., TH!" formalisms [1,7]). Formalisms
based on string theory [2,3] have the advantage of being
well motivated by theories of physics that are at present
good candidates for a unification of gravity and the other
fundamental forces of nature. Fairly recently a general
Lorentz violating extension of the standard model of par-
ticle physics (standard model extension, SME) has been
developed [8–10] whose Lagrangian includes all parame-
terized Lorentz violating terms that can be formed from
known fields. Many of the theories mentioned above are
included as special cases of the SME [11,12]. In this paper
we restrict our attention to the photon sector of the SME.
Within this framework we analyze past experiments that
can be shown to set limits on SME parameters that have not
been determined previously, and propose new experiments
that could significantly improve those limits.

As shown in [11] the photon sector of the SME can be
expressed in the form of modified source free Maxwell

equations, which take their familiar form

r:D ! 0; (1a)

r:B ! 0; (1b)

r"E# @tB ! 0; (1c)

r"H$ @tD ! 0; (1d)

but with modified definitions of D and H

D
H

! "
!

!0%e!r # #DE&
#####
!0
"0

q
#DB#####

!0
"0

q
#HE "$1

0 % e"r
$1 # #HB&

0
B@

1
CA E

B

! "
:

(2)

Here #DE, #DB, #HE and #HB are all 3" 3 matrices,
which parameterize possible Lorentz violating terms as
described in [11]. If we suppose the medium of interest
has general magnetic or dielectric properties, then e!r and
e"r are also 3" 3 matrices. In vacuum e!r and e"r are
identity matrices. For experimental tests it is convenient
to further define linear combinations of the # coefficients

%e#e#&jk! 1
2%#DE # #HB&jk;

%e#e$&jk! 1
2%#DE $ #HB&jk$ 1

3$
jk%#DE&ll;

%e#o#&jk! 1
2%#DB # #HE&jk;

%e#o$&jk! 1
2%#DB $ #HE&jk; %e#tr& ! 1

3%#DE&ll:

(3)

The first four of these equations define traceless 3" 3
matrices, while the last defines a single coefficient. All e#
matrices are symmetric except e#o# which is antisymmetric
(odd parity). There are 19 independent coefficients of the #
tensors, which are generally used to quote and compare
experimental results [11–15].

The # tensors in (2) and (3) are frame dependent and
consequently vary as a function of the coordinate system
chosen to analyze a given experiment. In principle they*Electronic address: mike@physics.uwa.edu.au
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I. INTRODUCTION

The postulate of Lorentz invariance (LI) is at the heart of
special and general relativity and therefore one of the
cornerstones of modern physics. The central importance
of this postulate has motivated tremendous work to experi-
mentally test LI with ever increasing precision [1].
Additionally, many unification theories (e.g., string theory
or loop gravity) are expected to violate LI at some level,
[2–4] which further motivates experimental searches for
such violations.

Numerous test theories that allow the modelling and
interpretation of experiments that test LI have been devel-
oped. Kinematical frameworks [5,6] postulate a simple
parameterization of the Lorentz transformations with ex-
periments setting limits on the deviation of those parame-
ters from their values in special relativity. A more
fundamental approach is offered by theories that parame-
terize the coupling between gravitational and nongravita-
tional fields (e.g., TH!" formalisms [1,7]). Formalisms
based on string theory [2,3] have the advantage of being
well motivated by theories of physics that are at present
good candidates for a unification of gravity and the other
fundamental forces of nature. Fairly recently a general
Lorentz violating extension of the standard model of par-
ticle physics (standard model extension, SME) has been
developed [8–10] whose Lagrangian includes all parame-
terized Lorentz violating terms that can be formed from
known fields. Many of the theories mentioned above are
included as special cases of the SME [11,12]. In this paper
we restrict our attention to the photon sector of the SME.
Within this framework we analyze past experiments that
can be shown to set limits on SME parameters that have not
been determined previously, and propose new experiments
that could significantly improve those limits.

As shown in [11] the photon sector of the SME can be
expressed in the form of modified source free Maxwell

equations, which take their familiar form

r:D ! 0; (1a)

r:B ! 0; (1b)

r"E# @tB ! 0; (1c)

r"H$ @tD ! 0; (1d)
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Here #DE, #DB, #HE and #HB are all 3" 3 matrices,
which parameterize possible Lorentz violating terms as
described in [11]. If we suppose the medium of interest
has general magnetic or dielectric properties, then e!r and
e"r are also 3" 3 matrices. In vacuum e!r and e"r are
identity matrices. For experimental tests it is convenient
to further define linear combinations of the # coefficients
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The first four of these equations define traceless 3" 3
matrices, while the last defines a single coefficient. All e#
matrices are symmetric except e#o# which is antisymmetric
(odd parity). There are 19 independent coefficients of the #
tensors, which are generally used to quote and compare
experimental results [11–15].

The # tensors in (2) and (3) are frame dependent and
consequently vary as a function of the coordinate system
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assume a(t) = a0 cos(!at). Note that all terms containing
ga�� are sometimes presented with the opposite sign, but
has no impact on this work as both representation are
correct.

By substituting the following vector identities, ~B·~ra =
~r · a ~B + a(~r · ~B) and ~ra ⇥ ~E = (~r⇥ a ~E) � a(~r⇥ ~E)
along with (5) and (6), into equations (3) and (4), the
modified Gauss’ and Ampere’s Law become

✏r
~r · ~E =

⇢f

✏0
+ ga��c

~r · (a ~B), (7)

~r⇥ ~B

µr

=
✏r

c2

@ ~E

@t
+ µ0

~Jf � ga��

c

 
@(a ~B)

@t
+ ~r⇥ (a ~E)

!
,

(8)

which is a more convenient and consistent way of ex-
pressing modified axion electrodynamics. In general, it is
better to represent the photon-axion interaction term as
the product of the axion scalar amplitude, a(t,~r), multi-
plied by either the applied ~E-field or the applied ~B-field.
This is similar to the form of the equations in [14], but
without the magnetic monopole duality. Moreover, this
representation directly satisfies Faraday’s Law (Eqn..(5))
and ~r · ~B = 0 (Eqn.(6)). The former representation,
Eqns. (3)-(6) may lead to confusion, with Faraday’s Law
seemingly sometimes only approximately satisfied when
the applied field ~E has been set to zero. This is because
the last term in Eqn.(4), actually has a term that de-
pends on the time derivative of the ~B field. With further
manipulation one can show that the modified Maxwell’s
equations maintain a similar form to the non-modified
equations, given by

~r · ~Da = ⇢f , (9)

~r⇥ ~Ha = ~Jf +
@ ~Da

@t
, (10)

~r · ~B = 0, (11)

~r⇥ ~E = �@ ~B

@t
, (12)

with the constitutive relations redefined as

~Da = ~D + ~Pa = ✏0✏r
~E � ga��a

r
✏0

µ0

~B, (13)

~Ha = ~H � ~Ma =
1

µ0µr

~B + ga��a

r
✏0

µ0

~E. (14)

Here ~D is the usual electric flux density (or ~D-field), ~H

the usual magnetic field intensity (or ~H-field), with ~Da

and ~Ha the modified definitions of these fields that sat-
isfy the equations (9) to (12) due to the additional axion
polarization, ~Pa and axion magnetization ~Ma (which we
will shortly define).

This is a similar approach to that which is adopted
when deriving modified Maxwell’s equations for the pho-
ton sector Standard Model Extension (SME)[15], which

includes in the Lagrangian all possible Lorentz invari-
ance violations. By comparison to SME modified elec-
trodynamics, it is apparent that ga��a is similar to an
oscillating odd-parity Lorentz invariance violation, DB

or HE . This type of Lorentz invariance violation is dis-
cussed in detail in [16] and is also presented in SI units
in this work.
With the modification defined thusly, it is straightfor-

ward to show that the continuity equation is satisfied.
From equations (7) and (8) we may define

⇢a = ga��

r
✏0

µ0

~r · (a ~B), (15)

~Ja = �ga��

r
✏0

µ0

@(a ~B)

@t
. (16)

In the situation where there are no free charges or free
conducting electrons, we interpret ⇢a as a vacuum bound
charge and ~Ja as a polarization current. Taking the time
derivative of Eqn.(15) and the divergence of Eqn. (16)
we obtain

r · ~Ja = �@⇢a

@t
, (17)

demonstrating that the continuity equation is satisfied.
This means we may interpret the e↵ective current den-
sity, ~Ja, due to the displacement of e↵ective bound
charge, ⇢a, as an oscillating vacuum polarization Pa given
by;

~Ja =
@ ~Pa

@t
; ~Pa = �ga��

r
✏0

µ0
a ~B. (18)

In general, the total displacement current is defined by

~JDa =
@ ~Da

@t
= ✏0✏r

@ ~E

@t
� ga��

r
✏0

µ0

@(a ~B)

@t
. (19)

Note, there is also an axion bound current associated
with the induced magnetization given by;

~Jba = ~r⇥ ~Ma = �ga��

r
✏0

µ0

~r⇥ (a ~E) (20)

Since the axion modifications are in the source terms
it is instructive to think of the oscillating bound charges
and currents as providing oscillations in the magnetiza-
tion and polarization of the vacuum, in a similar way that
free electron charge and spin cause vacuum polarization
(due to electric screening) and vacuum magnetization
(due to magnetic anti-screening), which also causes ”run-
ning” of the fine structure constant at high energies and
small distance scales [17, 18]. Thus, the oscillating mag-
netization and polarization could be interpreted as an
oscillation of the fine structure constant, ↵ (i.e. Eqn.(1)
shows axion-photon coupling is proportional to ↵), or
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I. INTRODUCTION

Lorentz symmetry underlies the theory of relativity and
all accepted theoretical descriptions of nature at the funda-
mental level. A crucial role in establishing both the rotation
and boost components of Lorentz symmetry has been played
by experimental studies of the properties of light. In the clas-
sic tests, rotation invariance is investigated in Michelson-
Morley experiments searching for anisotropy in the speed of
light, while boost invariance is studied via Kennedy-
Thorndike experiments seeking a variation of the speed of
light with the laboratory velocity #1–3$.
In this work, a theoretical study is performed of various

experiments testing Lorentz symmetry with light and other
electromagnetic radiation. The analysis is within the context
of the Lorentz- and CPT-violating standard-model extension
#4$, developed to allow for small general violations in Lor-
entz and CPT invariance #5$. The Lagrangian of this theory
includes all observer Lorentz scalars formed by combining
standard-model fields with coupling coefficients having Lor-
entz indices. At the level of quantum field theory, the viola-
tions can be regarded as remnants of Planck-scale physics
appearing at attainable energy scales. The coefficients for
Lorentz violation may be related to expectation values of
Lorentz tensors or vectors in an underlying theory #6$. To
date, experimental tests of the standard-model extension
have been performed with hadrons #7–10$, protons and neu-
trons #11$, electrons #12,13$, photons #14,15$, and muons
#16$.
In the present context of studies of electrodynamics, the

standard-model extension is of interest because it provides a
general field-theoretic framework for investigating the Lor-
entz properties of light. The theory contains as a subset a
general Lorentz-violating quantum electrodynamics !QED",
which includes a general Lorentz-violating extension of the
Maxwell equations. We study experiments that can measure
the coefficients for Lorentz violation in this generalized elec-
trodynamics. Our attention is restricted here to exceptionally
sensitive experiments that could be in a position to detect the
minuscule effects motivating the standard-model extension.
A basic feature of Lorentz-violating electrodynamics is

the birefringence of light propagating in vacuo. This results
in several potentially observable effects, including pulse dis-
persion and polarization changes. One goal of this work is to
consider the implications of these effects for the propagation
of radiation on astrophysical scales. We use available obser-
vations to constrain certain coefficients for Lorentz violation.
Another goal of this work is to analyze modern versions

of some classic tests of special relativity based on resonant-
cavity oscillators #17–19$, which have extreme sensitivity to
the properties of electromagnetic fields. These experiments
depend on the Earth’s sidereal and orbital motion. However,
the advent of the International Space Station !ISS" makes it
feasible to perform laboratory experiments in space, where
the orbital motion can yield different sensitivity to Lorentz-
violating effects #20$. We consider here both space- and
Earth-based laboratory experiments with resonant cavities.
The structural outline of this paper is as follows. Section

II presents some basic results and definitions for the general
Lorentz-violating electrodynamics and outlines the connec-
tion to some test models. We then consider birefringence
experiments, beginning in Sec. III A with some general is-
sues. Constraints stemming from the resulting effects on
pulse dispersion from astrophysical sources are addressed in
Sec. III B, while those from polarization changes over cos-
mological scales are treated in Sec. III C. A general analysis
for laboratory-based experiments on the Earth and in space is
presented in Sec. IV A. Sections IV B and IV C apply this
analysis to experiments with optical and microwave resonant
cavities. We summarize in Sec. V. Throughout this work, we
adopt the conventions of Ref. #4$.

II. LORENTZ-VIOLATING ELECTRODYNAMICS

This section provides some background and contextual
information about the general Lorentz-violating electrody-
namics. The basic formalism is presented, and some defini-
tions used in later sections are introduced. We also discuss
the connection between this theory and some test models for
Lorentz violation.
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where E! and B! are the electric and magnetic fields obtained
from solving the modified Maxwell equations !2". The 3
!3 matrices #DE , #HB , #DB , and #HE are defined by

!#DE" jk"#2!kF"0 j0k,

!#HB" jk"
1
2 $ jpq$krs!kF"pqrs,

!#DB" jk"#!#HE"k j"!kF"0 jpq$kpq.
!5"

The double-trace condition on (kF)#%&' translates to the
tracelessness of (#DE$#HB), while (kF)#[%&']"0 implies
the tracelessness of #DB"#(#HE)T. This leaves #DE and
#HB with eleven independent elements and the matrix #DB
"#(#HE)T with eight, which together represent the 19 in-
dependent components of kF . Note also that #DE and #HB
are parity even, while #DB"#(#HE)T is parity odd.
With these definitions, the modified Maxwell equations

!2", !3" take the familiar form

(! !H! #)0D! "0, (! •D! "0,

(! !E! $)0B! "0, (! •B! "0. !6"

As a consequence, many results from conventional electro-
dynamics in anisotropic media also hold for this Lorentz-
violating theory. For example, the energy-momentum tensor
takes the standard form in terms of E! , B! , D! and H! . This
implies the usual Poynting theorem, which can be applied in
conjunction with the symmetries of the matrices in Eq. !4" to
show that the vacuum is lossless.
For the applications to be addressed in later sections, it is

convenient to introduce the following decomposition of
(kF)#%&' coefficients:

! #̃e$" jk"
1
2 !#DE$#HB" jk,

! #̃e#" jk"
1
2 !#DE##HB" jk#

1
3 * jk!#DE" ll,

! #̃o$" jk"
1
2 !#DB$#HE" jk,

! #̃o#" jk"
1
2 !#DB##HE" jk,

#̃ tr"
1
3 !#DE" ll. !7"

The first four of these equations define traceless 3!3 matri-
ces, while the last defines a single coefficient. All parity-even
coefficients are contained in #̃e$ , #̃e# and #̃ tr , while all
parity-odd coefficients are in #̃o$ and #̃o# . The matrix #̃o$

is antisymmetric while the other three are symmetric.

The form of this decomposition helps in determining the
portion of the parameter space to which experiments are sen-
sitive and how different experiments might overlap. For ex-
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cavities search for rotation-violating parity-even observables.
The sensitivity of such experiments is therefore expected to
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ficients #̃e$ and #̃e# . For those observables depending at
leading order on the velocity, the eight coefficients #̃o$ and
#̃o# can be expected to play a role. Finally, at second order
in the velocity one can expect the sole rotation-invariant
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can be chosen as +15,
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!kF"0303#!kF"1212, !kF"0102$!kF"1323,

!kF"0103#!kF"1223, !kF"0203$!kF"1213,

!kF"0112$!kF"0323, !kF"0113#!kF"0223,

!kF"0212#!kF"0313]. !8"

Relating these to the #̃ matrices, we find

! #̃e$" jk"#! #!k3$k4" k5 k6

k5 k3 k7

k6 k7 k4
" ,

! #̃o#" jk"! 2k2 #k9 k8

#k9 #2k1 k10

k8 k10 2!k1#k2"
" . !9"

In this way, we can see directly that birefringence is con-
trolled by the matrices #̃e$ and #̃o# .
In terms of the # matrices defined in Eq. !5", and assum-

ing as before that (kAF)-"0, the Lagrangian !1" becomes

L"
1
2 !E! 2#B! 2"$

1
2E

! •!#DE"•E! #
1
2B

! •!#HB"•B!

$E! •!#DB"•B! . !10"

Similarly, using instead the #̃ matrices defined in Eq. !7", we
find

L"
1
2 +!1$#̃ tr"E! 2#!1##̃ tr"B! 2,$

1
2E

! •! #̃e$$#̃e#"•E!

#
1
2B

! •! #̃e$##̃e#"•B! $E! •! #̃o$$#̃o#"•B! . !11"
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A. Basic theory

The standard model of particle physics is believed to be
the low-energy limit of a fundamental theory that includes all
the forces in nature. The natural scale of this fundamental
theory is likely to be determined by the Planck mass. The
possibility that Lorentz- and CPT-violating signals from this
theory may be observable at energies attainable today led to
the development of the standard-model extension !4", which
is a general theory based on the standard model but allowing
for violations of Lorentz and CPT symmetry !5". The addi-
tional terms must be small because the usual standard model
agrees well with experiment. They may originate from spon-
taneous symmetry breaking in the fundamental theory !6".
The standard-model extension can be defined as the usual

standard-model Lagrangian plus all possible additional
Lorentz- and CPT-violating terms involving standard-model
fields that maintain invariance under Lorentz transformations
of the observer’s inertial frame. This invariance ensures that
the physics is independent of the choice of coordinates. The
Lorentz violation is associated with rotations and boosts of
particles or localized field configurations in a fixed observer
inertial frame.
Many of the detailed investigations of the standard-model

extension have been performed under the simplifying as-
sumption that the additional Lorentz- and CPT-violating
terms preserve the SU(3)!SU(2)!U(1) local gauge sym-
metry of the usual standard model. Another widely adopted
simplifying assumption is that the coefficients for Lorentz
violation are independent of position. This implies the viola-
tion is restricted to the Lorentz symmetry instead of the full
Poincaré symmetry and has several useful consequences for
experiment, including the conservation of energy and mo-
mentum. It is also often convenient to restrict attention to the
renormalizable sector of the theory, since this is expected to
dominate the physics at low energies. However, nonrenor-
malizable terms are known to play an important role at
higher energies !21".
Extracting terms involving the photon fields from the

standard-model extension yields a Lorentz- and
CPT-violating extension of QED !4". The fermion sector of
this theory has been widely studied. Here, we focus attention
on the pure-photon sector and limit attention to the renormal-
izable terms, which involve operators of mass dimension
four or less. The relevant Lagrangian is !4"

L"#
1
4 F#$F#$$

1
2 %kAF&'(')#$A)F#$

#
1
4 %kF&')#$F')F#$, %1&

where F#$*+#A$#+$A# . This theory maintains the usual
U%1& gauge invariance under the transformations qA#
→qA#$+#, . The Lagrangian contains the standard Max-
well term and two additional Lorentz-violating terms. The
first of these extra terms is CPT odd, and its coefficient
(kAF)' has dimensions of mass. The other is CPT even. Its
coefficient (kF)')#$ is dimensionless and has the symmetries

of the Riemann tensor and a vanishing double trace, which
implies a total of 19 independent components.
The CPT-odd term has received much attention in the

literature !22". This term provides negative contributions to
the canonical energy and therefore is a potential source of
instability. One solution is to set the coefficient to zero,
(kAF)'"0. This is theoretically consistent with radiative
corrections in the standard-model extension and is well sup-
ported experimentally: stringent constraints on kAF have
been set by studying the polarization of radiation from dis-
tant radio galaxies !14".
In contrast, much less is known about the CPT-even co-

efficient kF . Theoretical studies show that it provides posi-
tive contributions to the canonical energy and that it is radia-
tively induced from the fermion sector in the standard-model
extension !4,23". Constraints on some components have re-
cently been obtained from optical spectropolarimetry of cos-
mologically distant sources !15". In the present work, we
focus on the experimental implications of this CPT-even
term. The coefficient (kAF)' is set to zero for the analysis.
The equations of motion from Lagrangian %1& are

+-F#
-$%kF&#-./+-F./"0. %2&

These are modified source-free inhomogeneous Maxwell
equations. The homogeneous Maxwell equations,

+#F̃#$*
1
2 (#$')+#F')"0, %3&

remain unchanged.
Although it lies beyond our present scope, the techniques

presented here and the results obtained can be generalized to
the nonrenormalizable sector. The nonrenormalizable terms
can be classified according to their mass dimension. The di-
mensions of the corresponding coefficients are inverse pow-
ers of mass, and it is plausible that these coefficients are
suppressed by corresponding powers of the Planck scale.
Terms of this type appear in various special Lorentz-
violating theories, including noncommutative field theories
incorporating QED !24". Indeed, any coordinate-independent
theory with a photon sector containing nonrenormalizable
Lorentz-violating terms must be a subset of the standard-
model extension. It would be interesting to provide a detailed
study of the nonrenormalizable terms in the Lorentz-
violating electrodynamics and their experimental signals.

B. Analogy and definitions

A useful analogy exists between the Lorentz-violating
electrodynamics in vacuo and the conventional situation in
homogeneous anisotropic media !4". The idea is to define
fields D! and H! by the six-dimensional matrix equation

! D!
H!
" "! 1$'DE 'DB

'HE 1$'HB
" ! E!
B!
" , %4&
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3BNM-SYRTE, Observatoire de Paris, 61 Avenue de l’Observatoire, 75014 Paris, France

(Received 1 September 2004; published 7 January 2005)

We investigate experiments that are sensitive to the scalar and parity-odd coefficients for Lorentz
violation in the photon sector of the standard model extension (SME). We show that of the classic tests of
special relativity, Ives-Stilwell (IS) experiments are sensitive to the scalar coefficient, but at only parts in
105 for the state-of-the-art experiment. We then propose asymmetric Mach-Zehnder interferometers with
different electromagnetic properties in the two arms, including recycling techniques based on travelling
wave resonators to improve the sensitivity. With present technology we estimate that the scalar and parity-
odd coefficients may be measured with a sensitivity better than parts in 1011 and 1015 respectively.

DOI: 10.1103/PhysRevD.71.025004 PACS numbers: 03.30.+p, 06.30.Ft, 11.30.Cp

I. INTRODUCTION

The postulate of Lorentz invariance (LI) is at the heart of
special and general relativity and therefore one of the
cornerstones of modern physics. The central importance
of this postulate has motivated tremendous work to experi-
mentally test LI with ever increasing precision [1].
Additionally, many unification theories (e.g., string theory
or loop gravity) are expected to violate LI at some level,
[2–4] which further motivates experimental searches for
such violations.

Numerous test theories that allow the modelling and
interpretation of experiments that test LI have been devel-
oped. Kinematical frameworks [5,6] postulate a simple
parameterization of the Lorentz transformations with ex-
periments setting limits on the deviation of those parame-
ters from their values in special relativity. A more
fundamental approach is offered by theories that parame-
terize the coupling between gravitational and nongravita-
tional fields (e.g., TH!" formalisms [1,7]). Formalisms
based on string theory [2,3] have the advantage of being
well motivated by theories of physics that are at present
good candidates for a unification of gravity and the other
fundamental forces of nature. Fairly recently a general
Lorentz violating extension of the standard model of par-
ticle physics (standard model extension, SME) has been
developed [8–10] whose Lagrangian includes all parame-
terized Lorentz violating terms that can be formed from
known fields. Many of the theories mentioned above are
included as special cases of the SME [11,12]. In this paper
we restrict our attention to the photon sector of the SME.
Within this framework we analyze past experiments that
can be shown to set limits on SME parameters that have not
been determined previously, and propose new experiments
that could significantly improve those limits.

As shown in [11] the photon sector of the SME can be
expressed in the form of modified source free Maxwell

equations, which take their familiar form

r:D ! 0; (1a)

r:B ! 0; (1b)

r"E# @tB ! 0; (1c)

r"H$ @tD ! 0; (1d)

but with modified definitions of D and H

D
H

! "
!

!0%e!r # #DE&
#####
!0
"0

q
#DB#####

!0
"0

q
#HE "$1

0 % e"r
$1 # #HB&

0
B@

1
CA E

B

! "
:

(2)

Here #DE, #DB, #HE and #HB are all 3" 3 matrices,
which parameterize possible Lorentz violating terms as
described in [11]. If we suppose the medium of interest
has general magnetic or dielectric properties, then e!r and
e"r are also 3" 3 matrices. In vacuum e!r and e"r are
identity matrices. For experimental tests it is convenient
to further define linear combinations of the # coefficients

%e#e#&jk! 1
2%#DE # #HB&jk;

%e#e$&jk! 1
2%#DE $ #HB&jk$ 1

3$
jk%#DE&ll;

%e#o#&jk! 1
2%#DB # #HE&jk;

%e#o$&jk! 1
2%#DB $ #HE&jk; %e#tr& ! 1

3%#DE&ll:

(3)

The first four of these equations define traceless 3" 3
matrices, while the last defines a single coefficient. All e#
matrices are symmetric except e#o# which is antisymmetric
(odd parity). There are 19 independent coefficients of the #
tensors, which are generally used to quote and compare
experimental results [11–15].

The # tensors in (2) and (3) are frame dependent and
consequently vary as a function of the coordinate system
chosen to analyze a given experiment. In principle they*Electronic address: mike@physics.uwa.edu.au
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that could significantly improve those limits.

As shown in [11] the photon sector of the SME can be
expressed in the form of modified source free Maxwell

equations, which take their familiar form

r:D ! 0; (1a)

r:B ! 0; (1b)

r"E# @tB ! 0; (1c)

r"H$ @tD ! 0; (1d)

but with modified definitions of D and H

D
H

! "
!

!0%e!r # #DE&
#####
!0
"0

q
#DB#####

!0
"0

q
#HE "$1

0 % e"r
$1 # #HB&

0
B@

1
CA E

B

! "
:

(2)

Here #DE, #DB, #HE and #HB are all 3" 3 matrices,
which parameterize possible Lorentz violating terms as
described in [11]. If we suppose the medium of interest
has general magnetic or dielectric properties, then e!r and
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assume a(t) = a0 cos(!at). Note that all terms containing
ga�� are sometimes presented with the opposite sign, but
has no impact on this work as both representation are
correct.

By substituting the following vector identities, ~B·~ra =
~r · a ~B + a(~r · ~B) and ~ra ⇥ ~E = (~r⇥ a ~E) � a(~r⇥ ~E)
along with (5) and (6), into equations (3) and (4), the
modified Gauss’ and Ampere’s Law become

✏r
~r · ~E =

⇢f

✏0
+ ga��c

~r · (a ~B), (7)

~r⇥ ~B

µr

=
✏r

c2

@ ~E

@t
+ µ0

~Jf � ga��

c

 
@(a ~B)

@t
+ ~r⇥ (a ~E)

!
,

(8)

which is a more convenient and consistent way of ex-
pressing modified axion electrodynamics. In general, it is
better to represent the photon-axion interaction term as
the product of the axion scalar amplitude, a(t,~r), multi-
plied by either the applied ~E-field or the applied ~B-field.
This is similar to the form of the equations in [14], but
without the magnetic monopole duality. Moreover, this
representation directly satisfies Faraday’s Law (Eqn..(5))
and ~r · ~B = 0 (Eqn.(6)). The former representation,
Eqns. (3)-(6) may lead to confusion, with Faraday’s Law
seemingly sometimes only approximately satisfied when
the applied field ~E has been set to zero. This is because
the last term in Eqn.(4), actually has a term that de-
pends on the time derivative of the ~B field. With further
manipulation one can show that the modified Maxwell’s
equations maintain a similar form to the non-modified
equations, given by

~r · ~Da = ⇢f , (9)

~r⇥ ~Ha = ~Jf +
@ ~Da

@t
, (10)

~r · ~B = 0, (11)

~r⇥ ~E = �@ ~B

@t
, (12)

with the constitutive relations redefined as

~Da = ~D + ~Pa = ✏0✏r
~E � ga��a

r
✏0

µ0

~B, (13)

~Ha = ~H � ~Ma =
1

µ0µr

~B + ga��a

r
✏0

µ0

~E. (14)

Here ~D is the usual electric flux density (or ~D-field), ~H

the usual magnetic field intensity (or ~H-field), with ~Da

and ~Ha the modified definitions of these fields that sat-
isfy the equations (9) to (12) due to the additional axion
polarization, ~Pa and axion magnetization ~Ma (which we
will shortly define).

This is a similar approach to that which is adopted
when deriving modified Maxwell’s equations for the pho-
ton sector Standard Model Extension (SME)[15], which

includes in the Lagrangian all possible Lorentz invari-
ance violations. By comparison to SME modified elec-
trodynamics, it is apparent that ga��a is similar to an
oscillating odd-parity Lorentz invariance violation, DB

or HE . This type of Lorentz invariance violation is dis-
cussed in detail in [16] and is also presented in SI units
in this work.
With the modification defined thusly, it is straightfor-

ward to show that the continuity equation is satisfied.
From equations (7) and (8) we may define

⇢a = ga��

r
✏0

µ0

~r · (a ~B), (15)

~Ja = �ga��

r
✏0

µ0

@(a ~B)

@t
. (16)

In the situation where there are no free charges or free
conducting electrons, we interpret ⇢a as a vacuum bound
charge and ~Ja as a polarization current. Taking the time
derivative of Eqn.(15) and the divergence of Eqn. (16)
we obtain

r · ~Ja = �@⇢a

@t
, (17)

demonstrating that the continuity equation is satisfied.
This means we may interpret the e↵ective current den-
sity, ~Ja, due to the displacement of e↵ective bound
charge, ⇢a, as an oscillating vacuum polarization Pa given
by;

~Ja =
@ ~Pa

@t
; ~Pa = �ga��

r
✏0

µ0
a ~B. (18)

In general, the total displacement current is defined by

~JDa =
@ ~Da

@t
= ✏0✏r

@ ~E

@t
� ga��

r
✏0

µ0

@(a ~B)

@t
. (19)

Note, there is also an axion bound current associated
with the induced magnetization given by;

~Jba = ~r⇥ ~Ma = �ga��

r
✏0

µ0

~r⇥ (a ~E) (20)

Since the axion modifications are in the source terms
it is instructive to think of the oscillating bound charges
and currents as providing oscillations in the magnetiza-
tion and polarization of the vacuum, in a similar way that
free electron charge and spin cause vacuum polarization
(due to electric screening) and vacuum magnetization
(due to magnetic anti-screening), which also causes ”run-
ning” of the fine structure constant at high energies and
small distance scales [17, 18]. Thus, the oscillating mag-
netization and polarization could be interpreted as an
oscillation of the fine structure constant, ↵ (i.e. Eqn.(1)
shows axion-photon coupling is proportional to ↵), or
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By substituting the following vector identities, ~B·~ra =
~r · a ~B + a(~r · ~B) and ~ra ⇥ ~E = (~r⇥ a ~E) � a(~r⇥ ~E)
along with (5) and (6), into equations (3) and (4), the
modified Gauss’ and Ampere’s Law become

✏r
~r · ~E =

⇢f

✏0
+ ga��c

~r · (a ~B), (7)

~r⇥ ~B

µr

=
✏r

c2

@ ~E

@t
+ µ0

~Jf � ga��

c

 
@(a ~B)

@t
+ ~r⇥ (a ~E)

!
,

(8)

which is a more convenient and consistent way of ex-
pressing modified axion electrodynamics. In general, it is
better to represent the photon-axion interaction term as
the product of the axion scalar amplitude, a(t,~r), multi-
plied by either the applied ~E-field or the applied ~B-field.
This is similar to the form of the equations in [14], but
without the magnetic monopole duality. Moreover, this
representation directly satisfies Faraday’s Law (Eqn..(5))
and ~r · ~B = 0 (Eqn.(6)). The former representation,
Eqns. (3)-(6) may lead to confusion, with Faraday’s Law
seemingly sometimes only approximately satisfied when
the applied field ~E has been set to zero. This is because
the last term in Eqn.(4), actually has a term that de-
pends on the time derivative of the ~B field. With further
manipulation one can show that the modified Maxwell’s
equations maintain a similar form to the non-modified
equations, given by

~r · ~Da = ⇢f , (9)

~r⇥ ~Ha = ~Jf +
@ ~Da

@t
, (10)

~r · ~B = 0, (11)

~r⇥ ~E = �@ ~B

@t
, (12)

with the constitutive relations redefined as

~Da = ~D + ~Pa = ✏0✏r
~E � ga��a

r
✏0

µ0

~B, (13)

~Ha = ~H � ~Ma =
1

µ0µr

~B + ga��a

r
✏0

µ0

~E. (14)

Here ~D is the usual electric flux density (or ~D-field), ~H

the usual magnetic field intensity (or ~H-field), with ~Da

and ~Ha the modified definitions of these fields that sat-
isfy the equations (9) to (12) due to the additional axion
polarization, ~Pa and axion magnetization ~Ma (which we
will shortly define).

This is a similar approach to that which is adopted
when deriving modified Maxwell’s equations for the pho-
ton sector Standard Model Extension (SME)[15], which

includes in the Lagrangian all possible Lorentz invari-
ance violations. By comparison to SME modified elec-
trodynamics, it is apparent that ga��a is similar to an
oscillating odd-parity Lorentz invariance violation, DB

or HE . This type of Lorentz invariance violation is dis-
cussed in detail in [16] and is also presented in SI units
in this work.
With the modification defined thusly, it is straightfor-

ward to show that the continuity equation is satisfied.
From equations (7) and (8) we may define

⇢a = ga��

r
✏0

µ0

~r · (a ~B), (15)

~Ja = �ga��

r
✏0

µ0

@(a ~B)

@t
. (16)

In the situation where there are no free charges or free
conducting electrons, we interpret ⇢a as a vacuum bound
charge and ~Ja as a polarization current. Taking the time
derivative of Eqn.(15) and the divergence of Eqn. (16)
we obtain

r · ~Ja = �@⇢a

@t
, (17)

demonstrating that the continuity equation is satisfied.
This means we may interpret the e↵ective current den-
sity, ~Ja, due to the displacement of e↵ective bound
charge, ⇢a, as an oscillating vacuum polarization Pa given
by;

~Ja =
@ ~Pa

@t
; ~Pa = �ga��

r
✏0

µ0
a ~B. (18)

In general, the total displacement current is defined by

~JDa =
@ ~Da

@t
= ✏0✏r

@ ~E

@t
� ga��

r
✏0

µ0

@(a ~B)

@t
. (19)

Note, there is also an axion bound current associated
with the induced magnetization given by;

~Jba = ~r⇥ ~Ma = �ga��

r
✏0

µ0

~r⇥ (a ~E) (20)

Since the axion modifications are in the source terms
it is instructive to think of the oscillating bound charges
and currents as providing oscillations in the magnetiza-
tion and polarization of the vacuum, in a similar way that
free electron charge and spin cause vacuum polarization
(due to electric screening) and vacuum magnetization
(due to magnetic anti-screening), which also causes ”run-
ning” of the fine structure constant at high energies and
small distance scales [17, 18]. Thus, the oscillating mag-
netization and polarization could be interpreted as an
oscillation of the fine structure constant, ↵ (i.e. Eqn.(1)
shows axion-photon coupling is proportional to ↵), or

~ Axion Interaction similar to odd 
parity Lorentz Invariance Violation
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I. INTRODUCTION

Lorentz symmetry underlies the theory of relativity and
all accepted theoretical descriptions of nature at the funda-
mental level. A crucial role in establishing both the rotation
and boost components of Lorentz symmetry has been played
by experimental studies of the properties of light. In the clas-
sic tests, rotation invariance is investigated in Michelson-
Morley experiments searching for anisotropy in the speed of
light, while boost invariance is studied via Kennedy-
Thorndike experiments seeking a variation of the speed of
light with the laboratory velocity #1–3$.
In this work, a theoretical study is performed of various

experiments testing Lorentz symmetry with light and other
electromagnetic radiation. The analysis is within the context
of the Lorentz- and CPT-violating standard-model extension
#4$, developed to allow for small general violations in Lor-
entz and CPT invariance #5$. The Lagrangian of this theory
includes all observer Lorentz scalars formed by combining
standard-model fields with coupling coefficients having Lor-
entz indices. At the level of quantum field theory, the viola-
tions can be regarded as remnants of Planck-scale physics
appearing at attainable energy scales. The coefficients for
Lorentz violation may be related to expectation values of
Lorentz tensors or vectors in an underlying theory #6$. To
date, experimental tests of the standard-model extension
have been performed with hadrons #7–10$, protons and neu-
trons #11$, electrons #12,13$, photons #14,15$, and muons
#16$.
In the present context of studies of electrodynamics, the

standard-model extension is of interest because it provides a
general field-theoretic framework for investigating the Lor-
entz properties of light. The theory contains as a subset a
general Lorentz-violating quantum electrodynamics !QED",
which includes a general Lorentz-violating extension of the
Maxwell equations. We study experiments that can measure
the coefficients for Lorentz violation in this generalized elec-
trodynamics. Our attention is restricted here to exceptionally
sensitive experiments that could be in a position to detect the
minuscule effects motivating the standard-model extension.
A basic feature of Lorentz-violating electrodynamics is

the birefringence of light propagating in vacuo. This results
in several potentially observable effects, including pulse dis-
persion and polarization changes. One goal of this work is to
consider the implications of these effects for the propagation
of radiation on astrophysical scales. We use available obser-
vations to constrain certain coefficients for Lorentz violation.
Another goal of this work is to analyze modern versions

of some classic tests of special relativity based on resonant-
cavity oscillators #17–19$, which have extreme sensitivity to
the properties of electromagnetic fields. These experiments
depend on the Earth’s sidereal and orbital motion. However,
the advent of the International Space Station !ISS" makes it
feasible to perform laboratory experiments in space, where
the orbital motion can yield different sensitivity to Lorentz-
violating effects #20$. We consider here both space- and
Earth-based laboratory experiments with resonant cavities.
The structural outline of this paper is as follows. Section

II presents some basic results and definitions for the general
Lorentz-violating electrodynamics and outlines the connec-
tion to some test models. We then consider birefringence
experiments, beginning in Sec. III A with some general is-
sues. Constraints stemming from the resulting effects on
pulse dispersion from astrophysical sources are addressed in
Sec. III B, while those from polarization changes over cos-
mological scales are treated in Sec. III C. A general analysis
for laboratory-based experiments on the Earth and in space is
presented in Sec. IV A. Sections IV B and IV C apply this
analysis to experiments with optical and microwave resonant
cavities. We summarize in Sec. V. Throughout this work, we
adopt the conventions of Ref. #4$.

II. LORENTZ-VIOLATING ELECTRODYNAMICS

This section provides some background and contextual
information about the general Lorentz-violating electrody-
namics. The basic formalism is presented, and some defini-
tions used in later sections are introduced. We also discuss
the connection between this theory and some test models for
Lorentz violation.
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where E! and B! are the electric and magnetic fields obtained
from solving the modified Maxwell equations !2". The 3
!3 matrices #DE , #HB , #DB , and #HE are defined by

!#DE" jk"#2!kF"0 j0k,

!#HB" jk"
1
2 $ jpq$krs!kF"pqrs,

!#DB" jk"#!#HE"k j"!kF"0 jpq$kpq.
!5"

The double-trace condition on (kF)#%&' translates to the
tracelessness of (#DE$#HB), while (kF)#[%&']"0 implies
the tracelessness of #DB"#(#HE)T. This leaves #DE and
#HB with eleven independent elements and the matrix #DB
"#(#HE)T with eight, which together represent the 19 in-
dependent components of kF . Note also that #DE and #HB
are parity even, while #DB"#(#HE)T is parity odd.
With these definitions, the modified Maxwell equations

!2", !3" take the familiar form

(! !H! #)0D! "0, (! •D! "0,

(! !E! $)0B! "0, (! •B! "0. !6"

As a consequence, many results from conventional electro-
dynamics in anisotropic media also hold for this Lorentz-
violating theory. For example, the energy-momentum tensor
takes the standard form in terms of E! , B! , D! and H! . This
implies the usual Poynting theorem, which can be applied in
conjunction with the symmetries of the matrices in Eq. !4" to
show that the vacuum is lossless.
For the applications to be addressed in later sections, it is

convenient to introduce the following decomposition of
(kF)#%&' coefficients:

! #̃e$" jk"
1
2 !#DE$#HB" jk,

! #̃e#" jk"
1
2 !#DE##HB" jk#

1
3 * jk!#DE" ll,

! #̃o$" jk"
1
2 !#DB$#HE" jk,

! #̃o#" jk"
1
2 !#DB##HE" jk,

#̃ tr"
1
3 !#DE" ll. !7"

The first four of these equations define traceless 3!3 matri-
ces, while the last defines a single coefficient. All parity-even
coefficients are contained in #̃e$ , #̃e# and #̃ tr , while all
parity-odd coefficients are in #̃o$ and #̃o# . The matrix #̃o$

is antisymmetric while the other three are symmetric.

The form of this decomposition helps in determining the
portion of the parameter space to which experiments are sen-
sitive and how different experiments might overlap. For ex-
ample, typical laboratory experiments with electromagnetic
cavities search for rotation-violating parity-even observables.
The sensitivity of such experiments is therefore expected to
be dominantly to the ten rotation-violating parity-even coef-
ficients #̃e$ and #̃e# . For those observables depending at
leading order on the velocity, the eight coefficients #̃o$ and
#̃o# can be expected to play a role. Finally, at second order
in the velocity one can expect the sole rotation-invariant
quantity #̃ tr to affect measurements. These considerations are
confirmed by the results of the detailed analysis in the sec-
tions below.
As another example of the use of the decomposition !7",

recall that birefringence is known to depend on ten linearly
independent combinations of the components of kF , which
can be chosen as +15,

ka"+!kF"0213, !kF"0123, !kF"0202#!kF"1313,

!kF"0303#!kF"1212, !kF"0102$!kF"1323,

!kF"0103#!kF"1223, !kF"0203$!kF"1213,

!kF"0112$!kF"0323, !kF"0113#!kF"0223,

!kF"0212#!kF"0313]. !8"

Relating these to the #̃ matrices, we find

! #̃e$" jk"#! #!k3$k4" k5 k6

k5 k3 k7

k6 k7 k4
" ,

! #̃o#" jk"! 2k2 #k9 k8

#k9 #2k1 k10

k8 k10 2!k1#k2"
" . !9"

In this way, we can see directly that birefringence is con-
trolled by the matrices #̃e$ and #̃o# .
In terms of the # matrices defined in Eq. !5", and assum-

ing as before that (kAF)-"0, the Lagrangian !1" becomes

L"
1
2 !E! 2#B! 2"$

1
2E

! •!#DE"•E! #
1
2B

! •!#HB"•B!

$E! •!#DB"•B! . !10"

Similarly, using instead the #̃ matrices defined in Eq. !7", we
find

L"
1
2 +!1$#̃ tr"E! 2#!1##̃ tr"B! 2,$

1
2E

! •! #̃e$$#̃e#"•E!

#
1
2B

! •! #̃e$##̃e#"•B! $E! •! #̃o$$#̃o#"•B! . !11"
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A. Basic theory

The standard model of particle physics is believed to be
the low-energy limit of a fundamental theory that includes all
the forces in nature. The natural scale of this fundamental
theory is likely to be determined by the Planck mass. The
possibility that Lorentz- and CPT-violating signals from this
theory may be observable at energies attainable today led to
the development of the standard-model extension !4", which
is a general theory based on the standard model but allowing
for violations of Lorentz and CPT symmetry !5". The addi-
tional terms must be small because the usual standard model
agrees well with experiment. They may originate from spon-
taneous symmetry breaking in the fundamental theory !6".
The standard-model extension can be defined as the usual

standard-model Lagrangian plus all possible additional
Lorentz- and CPT-violating terms involving standard-model
fields that maintain invariance under Lorentz transformations
of the observer’s inertial frame. This invariance ensures that
the physics is independent of the choice of coordinates. The
Lorentz violation is associated with rotations and boosts of
particles or localized field configurations in a fixed observer
inertial frame.
Many of the detailed investigations of the standard-model

extension have been performed under the simplifying as-
sumption that the additional Lorentz- and CPT-violating
terms preserve the SU(3)!SU(2)!U(1) local gauge sym-
metry of the usual standard model. Another widely adopted
simplifying assumption is that the coefficients for Lorentz
violation are independent of position. This implies the viola-
tion is restricted to the Lorentz symmetry instead of the full
Poincaré symmetry and has several useful consequences for
experiment, including the conservation of energy and mo-
mentum. It is also often convenient to restrict attention to the
renormalizable sector of the theory, since this is expected to
dominate the physics at low energies. However, nonrenor-
malizable terms are known to play an important role at
higher energies !21".
Extracting terms involving the photon fields from the

standard-model extension yields a Lorentz- and
CPT-violating extension of QED !4". The fermion sector of
this theory has been widely studied. Here, we focus attention
on the pure-photon sector and limit attention to the renormal-
izable terms, which involve operators of mass dimension
four or less. The relevant Lagrangian is !4"

L"#
1
4 F#$F#$$

1
2 %kAF&'(')#$A)F#$

#
1
4 %kF&')#$F')F#$, %1&

where F#$*+#A$#+$A# . This theory maintains the usual
U%1& gauge invariance under the transformations qA#
→qA#$+#, . The Lagrangian contains the standard Max-
well term and two additional Lorentz-violating terms. The
first of these extra terms is CPT odd, and its coefficient
(kAF)' has dimensions of mass. The other is CPT even. Its
coefficient (kF)')#$ is dimensionless and has the symmetries

of the Riemann tensor and a vanishing double trace, which
implies a total of 19 independent components.
The CPT-odd term has received much attention in the

literature !22". This term provides negative contributions to
the canonical energy and therefore is a potential source of
instability. One solution is to set the coefficient to zero,
(kAF)'"0. This is theoretically consistent with radiative
corrections in the standard-model extension and is well sup-
ported experimentally: stringent constraints on kAF have
been set by studying the polarization of radiation from dis-
tant radio galaxies !14".
In contrast, much less is known about the CPT-even co-

efficient kF . Theoretical studies show that it provides posi-
tive contributions to the canonical energy and that it is radia-
tively induced from the fermion sector in the standard-model
extension !4,23". Constraints on some components have re-
cently been obtained from optical spectropolarimetry of cos-
mologically distant sources !15". In the present work, we
focus on the experimental implications of this CPT-even
term. The coefficient (kAF)' is set to zero for the analysis.
The equations of motion from Lagrangian %1& are

+-F#
-$%kF&#-./+-F./"0. %2&

These are modified source-free inhomogeneous Maxwell
equations. The homogeneous Maxwell equations,

+#F̃#$*
1
2 (#$')+#F')"0, %3&

remain unchanged.
Although it lies beyond our present scope, the techniques

presented here and the results obtained can be generalized to
the nonrenormalizable sector. The nonrenormalizable terms
can be classified according to their mass dimension. The di-
mensions of the corresponding coefficients are inverse pow-
ers of mass, and it is plausible that these coefficients are
suppressed by corresponding powers of the Planck scale.
Terms of this type appear in various special Lorentz-
violating theories, including noncommutative field theories
incorporating QED !24". Indeed, any coordinate-independent
theory with a photon sector containing nonrenormalizable
Lorentz-violating terms must be a subset of the standard-
model extension. It would be interesting to provide a detailed
study of the nonrenormalizable terms in the Lorentz-
violating electrodynamics and their experimental signals.

B. Analogy and definitions

A useful analogy exists between the Lorentz-violating
electrodynamics in vacuo and the conventional situation in
homogeneous anisotropic media !4". The idea is to define
fields D! and H! by the six-dimensional matrix equation

! D!
H!
" "! 1$'DE 'DB

'HE 1$'HB
" ! E!
B!
" , %4&
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I. INTRODUCTION

The postulate of Lorentz invariance (LI) is at the heart of
special and general relativity and therefore one of the
cornerstones of modern physics. The central importance
of this postulate has motivated tremendous work to experi-
mentally test LI with ever increasing precision [1].
Additionally, many unification theories (e.g., string theory
or loop gravity) are expected to violate LI at some level,
[2–4] which further motivates experimental searches for
such violations.

Numerous test theories that allow the modelling and
interpretation of experiments that test LI have been devel-
oped. Kinematical frameworks [5,6] postulate a simple
parameterization of the Lorentz transformations with ex-
periments setting limits on the deviation of those parame-
ters from their values in special relativity. A more
fundamental approach is offered by theories that parame-
terize the coupling between gravitational and nongravita-
tional fields (e.g., TH!" formalisms [1,7]). Formalisms
based on string theory [2,3] have the advantage of being
well motivated by theories of physics that are at present
good candidates for a unification of gravity and the other
fundamental forces of nature. Fairly recently a general
Lorentz violating extension of the standard model of par-
ticle physics (standard model extension, SME) has been
developed [8–10] whose Lagrangian includes all parame-
terized Lorentz violating terms that can be formed from
known fields. Many of the theories mentioned above are
included as special cases of the SME [11,12]. In this paper
we restrict our attention to the photon sector of the SME.
Within this framework we analyze past experiments that
can be shown to set limits on SME parameters that have not
been determined previously, and propose new experiments
that could significantly improve those limits.

As shown in [11] the photon sector of the SME can be
expressed in the form of modified source free Maxwell

equations, which take their familiar form

r:D ! 0; (1a)

r:B ! 0; (1b)

r"E# @tB ! 0; (1c)

r"H$ @tD ! 0; (1d)

but with modified definitions of D and H

D
H

! "
!

!0%e!r # #DE&
#####
!0
"0

q
#DB#####

!0
"0

q
#HE "$1

0 % e"r
$1 # #HB&

0
B@

1
CA E

B

! "
:

(2)

Here #DE, #DB, #HE and #HB are all 3" 3 matrices,
which parameterize possible Lorentz violating terms as
described in [11]. If we suppose the medium of interest
has general magnetic or dielectric properties, then e!r and
e"r are also 3" 3 matrices. In vacuum e!r and e"r are
identity matrices. For experimental tests it is convenient
to further define linear combinations of the # coefficients

%e#e#&jk! 1
2%#DE # #HB&jk;

%e#e$&jk! 1
2%#DE $ #HB&jk$ 1

3$
jk%#DE&ll;

%e#o#&jk! 1
2%#DB # #HE&jk;

%e#o$&jk! 1
2%#DB $ #HE&jk; %e#tr& ! 1

3%#DE&ll:

(3)

The first four of these equations define traceless 3" 3
matrices, while the last defines a single coefficient. All e#
matrices are symmetric except e#o# which is antisymmetric
(odd parity). There are 19 independent coefficients of the #
tensors, which are generally used to quote and compare
experimental results [11–15].

The # tensors in (2) and (3) are frame dependent and
consequently vary as a function of the coordinate system
chosen to analyze a given experiment. In principle they*Electronic address: mike@physics.uwa.edu.au
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I. INTRODUCTION

The postulate of Lorentz invariance (LI) is at the heart of
special and general relativity and therefore one of the
cornerstones of modern physics. The central importance
of this postulate has motivated tremendous work to experi-
mentally test LI with ever increasing precision [1].
Additionally, many unification theories (e.g., string theory
or loop gravity) are expected to violate LI at some level,
[2–4] which further motivates experimental searches for
such violations.

Numerous test theories that allow the modelling and
interpretation of experiments that test LI have been devel-
oped. Kinematical frameworks [5,6] postulate a simple
parameterization of the Lorentz transformations with ex-
periments setting limits on the deviation of those parame-
ters from their values in special relativity. A more
fundamental approach is offered by theories that parame-
terize the coupling between gravitational and nongravita-
tional fields (e.g., TH!" formalisms [1,7]). Formalisms
based on string theory [2,3] have the advantage of being
well motivated by theories of physics that are at present
good candidates for a unification of gravity and the other
fundamental forces of nature. Fairly recently a general
Lorentz violating extension of the standard model of par-
ticle physics (standard model extension, SME) has been
developed [8–10] whose Lagrangian includes all parame-
terized Lorentz violating terms that can be formed from
known fields. Many of the theories mentioned above are
included as special cases of the SME [11,12]. In this paper
we restrict our attention to the photon sector of the SME.
Within this framework we analyze past experiments that
can be shown to set limits on SME parameters that have not
been determined previously, and propose new experiments
that could significantly improve those limits.

As shown in [11] the photon sector of the SME can be
expressed in the form of modified source free Maxwell

equations, which take their familiar form

r:D ! 0; (1a)

r:B ! 0; (1b)

r"E# @tB ! 0; (1c)

r"H$ @tD ! 0; (1d)

but with modified definitions of D and H

D
H

! "
!

!0%e!r # #DE&
#####
!0
"0

q
#DB#####

!0
"0

q
#HE "$1

0 % e"r
$1 # #HB&

0
B@

1
CA E

B

! "
:

(2)

Here #DE, #DB, #HE and #HB are all 3" 3 matrices,
which parameterize possible Lorentz violating terms as
described in [11]. If we suppose the medium of interest
has general magnetic or dielectric properties, then e!r and
e"r are also 3" 3 matrices. In vacuum e!r and e"r are
identity matrices. For experimental tests it is convenient
to further define linear combinations of the # coefficients

%e#e#&jk! 1
2%#DE # #HB&jk;

%e#e$&jk! 1
2%#DE $ #HB&jk$ 1

3$
jk%#DE&ll;

%e#o#&jk! 1
2%#DB # #HE&jk;

%e#o$&jk! 1
2%#DB $ #HE&jk; %e#tr& ! 1

3%#DE&ll:

(3)

The first four of these equations define traceless 3" 3
matrices, while the last defines a single coefficient. All e#
matrices are symmetric except e#o# which is antisymmetric
(odd parity). There are 19 independent coefficients of the #
tensors, which are generally used to quote and compare
experimental results [11–15].

The # tensors in (2) and (3) are frame dependent and
consequently vary as a function of the coordinate system
chosen to analyze a given experiment. In principle they*Electronic address: mike@physics.uwa.edu.au
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assume a(t) = a0 cos(!at). Note that all terms containing
ga�� are sometimes presented with the opposite sign, but
has no impact on this work as both representation are
correct.

By substituting the following vector identities, ~B·~ra =
~r · a ~B + a(~r · ~B) and ~ra ⇥ ~E = (~r⇥ a ~E) � a(~r⇥ ~E)
along with (5) and (6), into equations (3) and (4), the
modified Gauss’ and Ampere’s Law become

✏r
~r · ~E =

⇢f

✏0
+ ga��c

~r · (a ~B), (7)

~r⇥ ~B

µr

=
✏r

c2

@ ~E

@t
+ µ0

~Jf � ga��

c

 
@(a ~B)

@t
+ ~r⇥ (a ~E)

!
,

(8)

which is a more convenient and consistent way of ex-
pressing modified axion electrodynamics. In general, it is
better to represent the photon-axion interaction term as
the product of the axion scalar amplitude, a(t,~r), multi-
plied by either the applied ~E-field or the applied ~B-field.
This is similar to the form of the equations in [14], but
without the magnetic monopole duality. Moreover, this
representation directly satisfies Faraday’s Law (Eqn..(5))
and ~r · ~B = 0 (Eqn.(6)). The former representation,
Eqns. (3)-(6) may lead to confusion, with Faraday’s Law
seemingly sometimes only approximately satisfied when
the applied field ~E has been set to zero. This is because
the last term in Eqn.(4), actually has a term that de-
pends on the time derivative of the ~B field. With further
manipulation one can show that the modified Maxwell’s
equations maintain a similar form to the non-modified
equations, given by

~r · ~Da = ⇢f , (9)

~r⇥ ~Ha = ~Jf +
@ ~Da

@t
, (10)

~r · ~B = 0, (11)

~r⇥ ~E = �@ ~B

@t
, (12)

with the constitutive relations redefined as

~Da = ~D + ~Pa = ✏0✏r
~E � ga��a

r
✏0

µ0

~B, (13)

~Ha = ~H � ~Ma =
1

µ0µr

~B + ga��a

r
✏0

µ0

~E. (14)

Here ~D is the usual electric flux density (or ~D-field), ~H

the usual magnetic field intensity (or ~H-field), with ~Da

and ~Ha the modified definitions of these fields that sat-
isfy the equations (9) to (12) due to the additional axion
polarization, ~Pa and axion magnetization ~Ma (which we
will shortly define).

This is a similar approach to that which is adopted
when deriving modified Maxwell’s equations for the pho-
ton sector Standard Model Extension (SME)[15], which

includes in the Lagrangian all possible Lorentz invari-
ance violations. By comparison to SME modified elec-
trodynamics, it is apparent that ga��a is similar to an
oscillating odd-parity Lorentz invariance violation, DB

or HE . This type of Lorentz invariance violation is dis-
cussed in detail in [16] and is also presented in SI units
in this work.
With the modification defined thusly, it is straightfor-

ward to show that the continuity equation is satisfied.
From equations (7) and (8) we may define

⇢a = ga��

r
✏0

µ0

~r · (a ~B), (15)

~Ja = �ga��

r
✏0

µ0

@(a ~B)

@t
. (16)

In the situation where there are no free charges or free
conducting electrons, we interpret ⇢a as a vacuum bound
charge and ~Ja as a polarization current. Taking the time
derivative of Eqn.(15) and the divergence of Eqn. (16)
we obtain

r · ~Ja = �@⇢a

@t
, (17)

demonstrating that the continuity equation is satisfied.
This means we may interpret the e↵ective current den-
sity, ~Ja, due to the displacement of e↵ective bound
charge, ⇢a, as an oscillating vacuum polarization Pa given
by;

~Ja =
@ ~Pa

@t
; ~Pa = �ga��

r
✏0

µ0
a ~B. (18)

In general, the total displacement current is defined by

~JDa =
@ ~Da

@t
= ✏0✏r

@ ~E

@t
� ga��

r
✏0

µ0

@(a ~B)

@t
. (19)

Note, there is also an axion bound current associated
with the induced magnetization given by;

~Jba = ~r⇥ ~Ma = �ga��

r
✏0

µ0

~r⇥ (a ~E) (20)

Since the axion modifications are in the source terms
it is instructive to think of the oscillating bound charges
and currents as providing oscillations in the magnetiza-
tion and polarization of the vacuum, in a similar way that
free electron charge and spin cause vacuum polarization
(due to electric screening) and vacuum magnetization
(due to magnetic anti-screening), which also causes ”run-
ning” of the fine structure constant at high energies and
small distance scales [17, 18]. Thus, the oscillating mag-
netization and polarization could be interpreted as an
oscillation of the fine structure constant, ↵ (i.e. Eqn.(1)
shows axion-photon coupling is proportional to ↵), or
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Define an impressed free charge polarization or impressed electric field vector 
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Another example is modelling antenna near and far fields driven by a voltage 
source -> Modelled by a magnetic current and Two-Potential formulation. 
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Effective axion forces
⃗∇ × ⃗E T +

∂ ⃗B
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= − gaγγa
c
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⃗J i
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IGNORES THE ELECTRIC VECTOR POTENTIAL

QUANTUM FIELD CALCULATION
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Axion Two Photon Coupling

a(t) ≈ a0 cos(ωat)



ℒaγ =
gaγ

4
aFF̃ = − gaγγa

ϵ0

μ0

⃗E ⋅ ⃗B

What is the Orthogonality of E and B in the Low-Mass Limit under 
DC Magnetic Field?

ℒaγ = − gaγγ
ϵ0

μ0

⃗E ⋅ (a ⃗B 0)

⃗E − > ⃗E T = ⃗E aB + ⃗E

• -> To get direct sensitivity E must have non-zero Curl (i.e. a Voltage Source)!
• -> Answer is that need to Redefine E and B fields to include the axion modified parts!

Solenoidal oscillating at 
axion Compton 

frequency

ℒ′�aγ = − gaγγ
ϵ0

μ0

⃗E T ⋅ (a ⃗B 0)

ℒ′�aγ =
1

μ0ϵr
g2

aγ(a ⃗B 0)2

Solenoidal oscillating at 
axion Compton 

frequency

⃗B = ⃗B 0

⃗κ f0

⃗B 0

⃗E aB = − gaγγ
c
ϵr

(a ⃗B 0)

Solenoidal oscillating at 
axion Compton 

frequency

Axion Two Photon Coupling

a(t) ≈ a0 cos(ωat)




