

Institute of Cosmos Sciences

Radiopure electronics for the Micromegas detector for IAXO

<u>COGOLLOS Cristian, PICATOSTE Eduardo</u>, COSTA David, GASCON David, MAURICIO Joan, MIRALDA Jordi

Micromegas Detector and AGET

- Time Projector Chamber (TPC) with MICRO-MEsh GAseous Structure (Micromegas) detector [1]:
 - Argon filled chamber with gas-tight window made of 4 μm aluminized mylar foil. as cathode
 - The Micromegas readout anode is a 2-D strip pattern of 120 strips per axis at a pitch of 500 μm covering a surface of 6x6 cm².
- Readout electronics
 - Based on the AGET chip [2]:
 O Provides autotrigger for each channel

Background Levels

Background levels have been reduced using highly radiopure materials, shielding and muon vetos [3].

- Next generation "axion helioscope" after CAST
 - Purpose-built large-scale magnet
 - 8 conversion bores of 60 cm Ø, ~20 m long
 - Sun-tracking time is ~50% day
- Detection systems: x-ray telescope + detector
 - Low-background techniques for detectors
- Modular and flexible general purpose readout system for small to medium size gaseous detectors designed at IRFU, CEA Saclay.
- Main objective of the new readout electronics detector: reduce noise as much as possible to maximize sensitivity for IAXO.
 - Reduce detector to electronics distance
 - Use radiopure components

Proposed new partition: FEC and BEC Electronics design Parts Placement New partition of the electronics Detector and electronics placement BEC Shield Shield FEC Based on the FEC-Feminos cards (Saclay) inside the shielding Move sensitive, AGET, in Front End Card Trigger/Clock AGET FPGA (FEC) as close as possible to the detector DAQ Micromegas FEC TPC to optimize S/N Back End Card (BEC), with FPGA+ADC, AGET separated tens of cm by extra shielding ADC Redesign of the cards AGET Different partition

- Radiopurity and components
 - Kapton PCB
 - Face to Face connector
 - Selection of radiopure packaging for the AGET ASIC

Component selection and validation

- Spark protection circuits (R, C, diodes)
- Coupling capacitors

Simulation Studies

- Simulations to study the effects of the electronics on the detector
 - Replicate the design (boards and components)
 - Emission events generated via Monte Carlo
 - Estimate the energy deposited by impurities
 - REST framework
- Previous studies of background models and data analysis on the CAST experiment by the group of the University of Zaragoza.
- Search for FEC optimal placement: check several positions of the board and distances from the detector
- The elements included in the FEC simulation and their activity

 Measured activities of components and materials obtained from a screening program of the TREX project [4]
 If not already measured, worst cases of known similar components are used.

Electronics simulated activity

• Deposited energy in gas due to radiation emitted from the electronics.

Electronic components activities

Component	Quantity (per board)	Dimensions	⁴⁰ K	⁶⁰ Co	¹³⁷ Cs	²²⁶ Ra	²²⁸ Ra	²²⁸ Th	²³² Th	²³⁵ U	²³⁸ U
Capacitors	106	mBq/unit	5.29	<0.036	<0.043	5.29		8.75	8.52		10.4
Resistances	128	μBq/unit	83.6	<0.2	104	4.1		4.4	4.4		85
AGET Chip	1	mBq/unit	0.83			0.48	0.16	0.47			8.77
Diodes	64	μBq/unit							2.9	2.6	1.4

Conclusions

- Relevant components with impurities
 - AGET ASIC
 - Spark protection: diodes, resistors and capacitors
- Total integral effect of electronics at ¼ distance from the Micromegas inside the shielding has been simulated to be 2·10⁻⁸counts/keV·cm²·s

References

- 1. S. Aune et al., Low background x-ray detection with Micromegas for axion research, JINST 9 P01001 [arXiv:1310.3391] (2014)
- 2. S. Anvar et al., AGET, the GET front-end ASIC, for the readout of the Time Projection Chambers used in nuclear physic experiments. [DOI:10.1109/NSSMIC.2011.6154095] (2011)
- 3. IAXO Collaboration, BabylAXO: the first stage of the International Axion Observatory (IAXO), Experiment Proposal to the DESY PRC (April 23, 2019)
- 4. S. Cebrián et al., Radiopurity assessment of the energy readout for the NEXT double beta decay experiment. JINST 12 T08003 [arXiv:1706.06012] (2017)

15th Patras Workshop on Axions, WIMPs and WISPs