

The ultimate low-background astroparticle physics observatory JCAP 11, 017 (2016), arXiv:1606.07001

Luca Scotto Lavina LPNHE, CNRS/IN2P3 (for the DARWIN Collaboration)

15th Patras Workshop on Axions, WIMPs and WISPs Freiburg June 5th, 2019

The current WIMP landscape

The best sensitivity to WIMPs for a wide mass range comes from experiments using liquid noble gases as sensitive detectors: Xe, Ar

This technology allows a relatively easy scalability to higher masses and with concrete perspectives of background reduction

The current WIMP landscape

Probing lower cross sections will require much larger detectors.

DARWIN, with its 40 tons of active target, aims to be the ultimate discovery detector before neutrino floor

DARWIN as the next phase of the XENON Project

The advantages of a dual-phase xenon TPC

Working principle

Detection of scintillation light **S1** and the ionization through a delayed proportional scintillation signal **S2**

The TPC baseline concept

JCAP 11, 017 (2016), arXiv:1606.07001

• 50 t LXe in total (40 t in the TPC)

• ~ 10³ photosensors

- 2.6 m drift length,
 2.6 m diameter TPC,
 PTFE reflectors,
 Cu field shaping rings
- Overall background
 - \rightarrow dominated by neutrinos only

The TPC baseline concept and challenges

- 50 t LXe in total (40 t in the TPC)
 → Improving storage, purification, cooling
- ~ 10³ photosensors
 - → Alternatives to traditional PMTs (improving discrimination, cost, compactness, coverage, radioactivity)
- 2.6 m drift length,
 2.6 m diameter TPC,
 PTFE reflectors,
 Cu field shaping rings
 - \rightarrow High voltage, proportional scintillation
- Overall background
 - \rightarrow dominated by neutrinos only

Background

M. Schumann et al., JCAP 1510 (2015) 016

10

Electronic Recoils (ER)

radiogenic, intrinsic, cosmogenic

Source	Rate (t·y·keV)-1
Solar neutrinos (mostly pp; ⁷ Be)	3.25
⁸⁵ Kr (=2·10 ⁻¹¹ ^{nat} Kr, @O.1ppt ^{nat} Kr)	1.44
¹³⁶ Xe 2 νββ (natural @8.9%)	0.73
²²² Rn (@0.1µBq/kg)	0.35
Materials (cryostat, photosensors, TPC)	0.054
Required ER rejection > 99.98%	
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	pp+ ⁷ Be neutrinos
$\begin{array}{c} \searrow & 2.0 \\ \searrow & & \\ \searrow & & \\ \times & 1.5 \end{array}$	2νββ
	⁸⁵ Kr
0.5	²²² Rn
$0.00 \xrightarrow{\text{materials}}_{2} 4 6 8 10 12 14$ Energy [keVee]	

Nuclear Recoils (NR) radiogenic, cosmogenic Source Rate (t·y·keV)-1 Radiogenic neutrons : 3.8.10-5 $((\alpha,n),$ spontaneous fission) Cosmogenic neutrons negligible with a 14m x 14m^o water shield Coherent neutrino-nucleus 0.0022 scattering (CNNS) Example: DARWIN in a water tank instrumented with a veto system 14 m S1+S2 combined (LY= 8 PE/keV) 10^{3} S1-based (LY= 8 PE/keV) Rate $[(t \times y \times keVnr)^{-1}]$ S1+S2 combined (LY=12 PE/keV) 10 S1-based (LY=12 PE/keV) infinite resolution $\begin{array}{c} 10 \text{ GeV/c}^2 \text{WIMP} \\ \sigma = 2 \times 10^{-46} \text{ cm}^2 \end{array}$ 40 GeV/c² WIMP $\sigma = 2 \times 10^{-48} \text{ cm}^2$ 10^{-2}

10

Energy [keVnr]

12

14

8

20

18

16

Rich science goal

The DARWIN detector, with its large mass, low-energy threshold and ultralow background, will open a large variety of physics channels

- Probe WIMP-nucleon interactions for WIMP masses above ~5 GeV/c2 (via spin-independent, spin-dependent and inelastic interactions)
- Probe even lower WIMP masses by using the charge signal alone (XENON10, XENON100, CDMS, EDELWEISS, DS-50, ...)
- Coherent neutrino-nucleus scattering : ⁸B neutrinos from sun
- Coherent neutrino-nucleus scattering : galactic supernova neutrinos
- "Leptophilic DM" models : look for signatures of DM scattering off electrons
- Solar neutrinos: pp-neutrinos via nu-e scattering (precision <1% on flux)
- \bullet Search for the neutrinoless double beta decay in $^{\rm 136} \rm Xe$
- \bullet Measuring double electron capture in $^{124}\mbox{Xe}$
- Probe solar axions and axion-like particles models (axio-electric effect)
- Probe sterile neutrinos with masses in the > 10 keV range

See S. Lindemann XENON1T talk on friday

Science goal : SI WIMP-nucleon interactions

200 t·y exposure $E = 4-50 \text{ keV}_{nr}$ 30% NR acceptance 99.98% ER rejection LY = 8 PE/keV @ 122keV

 $E = 4-50 \text{ keV}_{nr}$ 30% NR acceptance 99.98% ER rejection LY = 8 PE/keV @ 122keV Complementarity with the LHC: minimal simplified DM model with Dirac fermion interacting with an axial-vector mediator $g \equiv g_q = g_{DM}$ *S. A. Malik et al., Phys. Dark Univ. 9-10 (2015) 51*

"neutrino floor" : nuclear recoils from neutrinos Background and an opportunity

L. Baudis et al., JCAP 01, 044 (2014), arXiv:1309.7024

Coherent neutrino-nucleus scatters: $v + N \rightarrow v + N$

(all neutrino flavours)

- ⁸B solar neutrinos

 → 90 events/t/y @ E>1keV_{nr}
 (note: LUX re-analysis E_{th}>1.1keV_{nr})
 About 3000 CNNS events/year
- Atmospheric neutrinos $\rightarrow 3 \cdot 10^{-3}$ events/t/y @ E>4keV_{nr}

A deviation from expected fluxes \rightarrow signature for a new physics

Supernova neutrinos

Coherent neutrino-nucleus scatters: $v + N \rightarrow v + N$

(all neutrino flavours)

• Neutrinos from Supernova bursts

O(10) MeV v's \rightarrow O(1) keV NR

→ 5 σ significance with a 27 M_{\odot} progenitor far up to 65 kpc from Earth

→ 704 events @ 10 kpc

Electronic recoils : solar neutrinos

L. Baudis et al., JCAP 01, 044 (2014), arXiv:1309.7024

 $v + e^{-} \rightarrow v + e^{-}$

Expected rate at 2-30 keV_{ee}

- pp neutrinos : 7.2 events/day
- ⁷Be neutrinos : 0.9 events/day

More than 2000 neutrino pp events per year 2% precision in a year, 1% after 5 years Scoping neutrino and solar models

Any deviation would imply new physics

Neutrinoless double beta decay

¹³⁶Xe:
$$Q_{\beta\beta} = 2458.7 \pm 0.6 \text{ keV}$$

Sensitivity to $0\nu\beta\beta$ by ¹³⁶Xe (8.9%)): • $T_{1/2} > 5.6 \cdot 10^{26}$ yr (95% CL) in 30 t y

• $T_{1/2} > 8.5 \cdot 10^{27}$ yr (95% CL) in 140 t y

Assumptions:

- Fiducial mass 6 t ^{nat}Xe (needed stronger fiducialisation)
- ²²²Rn: 0.1 μBq/kg (rate compatible with ⁸B)
- $\sigma_{\rm E}/E$ = 1-2% at $Q_{\beta\beta}$
- DARWIN "ultimate" assumes negligible background from detector materials

Estimated timescale

- Currently 28 groups from 11 countries
- Present in the APPEC roadmap
- 2 ERC obtained for large scale demonstrators (Zurich and Freiburg)
- Growing national supports for R&D (cryogenics, light detection and bg suppression)
- 6 WPs to follow studies and R&D activities

Two large scale prototypes

DARWIN full-length demonstrator

The main goal is the demonstration of the electron drift over the full height of DARWIN

DARWIN full-(x,y) scale demonstrator

The main goal is to test components at real diameter under real conditions

flatness of electrodes

- strength of the extraction field
 x-y homogeneity of the drift field
- x-y nomogeneity of the drift field

Technical challenges in cryogenics : cooling, purification

Cooling:

Stability is the key. Use of highly redundant cooling systems: pulse tube refrigerators (PTR) and nitrogen-based cooling. XENON1T already makes use of high redundancy and will serve as a validation of the technique.

Purification (from electronegative impurities):

"electron lifetime" during drift > 2ms Improved charge signal and its resolution R&D on novel ultra-clean pumps

Extract of XENON1T cooling system

Technical challenge in cryogenics : storage

Goal: Store, fill and quickly recuperate tons of liquid xenon to/from the detector

Solution for XENON1T/nT is **ReStoX(1+2)**:

ReStoX 1 :

Two nitrogen-based cooling systems:

- External cooling system (very high cooling power)
- Inner cooling system (~3kW, fine tuning, pressure regulator)

ReStoX 2 :

High

- High capacity (10 tons)
- Fast cooling and recovery (by crystallization)

Both of them capable to withstand high pressures (72 bars) in absence of cooling

ReStoX 2 : 5.5 m high cylinder

Summary

DARWIN is the ultimate low-background astroparticle physics observatory Extremely rich variety of physics channels, ranging from

Dark Matter search (WIMPs, axions, leptophilic models, ...)

to

Neutrino physics (Ονββ decay; solar, atmospheric and supernova neutrinos) In both cases we showed how it can be extremely competitive on those fields DARWIN is a Collaboration, it has groups from 11 countries and it's growing

R&Ds on any aspect of the detector are already ongoing in order to arrive over the horizon of the new decade with a concrete TDR

This is the right moment to come aboard !

Thanks

Technical challenge : lowering background

Goal: Electron recoils dominated by solar neutrinos only \rightarrow having ⁸⁵Kr and ²²²Rn rate sub-dominant

• ⁸⁵Kr: 0.1 ppt of ^{nat}Kr

Method : separation of ${}^{\rm nat}{\rm Kr}$ with a distillation column

→ A test run with new XENON1T apparatus from Munster group provided < 0.03 ppt (factor x3 better than needed), measured by MPIK RGMS system.

S. Rosendahl, Gas purification of the XENON dark matter search, PhD thesis, University of Münster (2015)

- ²²²Rn: 0.1 μBq/kg
- 10 μ Bq/kg is target for XENON1T

→ Challenging. Control Rn levels with low-emanation materials & cryogenic distillation (use different vapour pressure), adsorption

Science goal : axions and axion-like particles

Assumptions:

- 200 t·y exposure
- Similar energy threshold as in XENON100
- 30% better energy resolution

Dominating background: solar neutrinos and $2\nu\beta\beta$ $^{\rm 136} Xe$

Dependency from exposure: $G^{\text{solar}}_{Ae} \propto (\text{MT})^{-1/8}$ $G^{\text{ALP}}_{Ae} \propto (\text{MT})^{-1/4}$

WIMP spectroscopy

200 t·y exposure $v_{esc} = 544 \pm 40$ km/s $v_{o} = 220 \pm 20$ km/s $\rho_{\chi} = 0.3 \pm 0.1$ GeV/cm³

Capability on reconstructing the WIMP mass and cross section for various masses (20, 100, 500 GeV/c2) and cross sections (reference line: XENON1T sensitivity)