Fifth Force Searches in Galaxies

Harry Desmond

with Pedro Ferreira, Guilhem Lavaux & Jens Jasche

4 June 2019

15th Patras Workshop

Introduction I. Fifth forces

- Generic extensions to the standard model couple new dynamical fields to matter
- \rightarrow New (*fifth*) forces, described by strength and range

$$\Phi_{\rm tot} = -\frac{G_N M}{r} \left(1 + \frac{\Delta G}{G_N} e^{-mr} \right) = \Phi_N - \frac{\Delta G M}{r} e^{-mr}$$

Introduction I. Fifth forces

- Generic extensions to the standard model couple new dynamical fields to matter
- → New (fifth) forces, described by strength and range

$$\Phi_{\rm tot} = -\frac{G_N M}{r} \left(1 + \frac{\Delta G}{G_N} e^{-mr} \right) = \Phi_N - \frac{\Delta G M}{r} e^{-mr}$$

Introduction II. Screening mechanisms

Fifth force goes away in dense environments

Introduction II. Screening mechanisms

Fifth force goes away in dense environments

- Chameleon: $m_{eff} \rightarrow \infty$ (e.g. f(R))
- *Kinetic*: $\partial \phi \rightarrow \infty$ (e.g. K-mouflage)
- Symmetron & Vainshtein: $\Delta G \rightarrow 0$ (e.g. Galileons, DGP)

Chameleon

Searching for screening in astrophysics

Logic of screening points us to low mass galaxies in voids Need observational proxies for degree of screening

Mechanism	Dominant term at high ρ	Observational proxy
Chameleon	Mass	Newtonian potential Φ
Kinetic/K-mouflage	Kinetic	Acceleration a
Vainshtein	Higher-order	Curvature K

Gravitational Mapmaking I. Method

$$\Phi_{j} \sim \sum_{i} GM_{i}/r_{ij} \qquad \vec{a}_{j} \sim \sum_{i} GM_{i}\hat{\vec{r}_{ij}}/r_{ij}^{2} \qquad K_{j} \sim \sum_{i} GM_{i}/r_{ij}^{3}$$

Three contributions to each:

1) Halo mass associated with 2M++ galaxies

- 2) Halos hosting galaxies too faint to see
- 3) Mass in long-wavelength modes (Lavaux & Jasche 2016)

Harry Desmond – Fifth force searches in galaxies

Desmond et al, MNRAS 474:3152 (2018)

Gravitational Mapmaking II. Results

potential

acceleration

curvature

Desmond et al, MNRAS 474:3152 (2018)

Signals of Screened Fifth Forces A. Separation of stars and gas

 In unscreened galaxies, stars self-screen and lag behind gas & dark matter

Signals of Screened Fifth Forces A. Separation of stars and gas

 In unscreened galaxies, stars self-screen and lag behind gas & dark matter

• Equilibrium offset \vec{r}_* given by:

$$\frac{G_N M(< r_*)}{r_*^2} \, \hat{r}_* = \vec{a}_5 \, \frac{\Delta G}{G_N}, \qquad |\Phi| < |\Phi_c|$$

$$\vec{r}_* = 0, \qquad |\Phi| > |\Phi_c|$$

- Measure stars with optical emission (SDSS) and gas with HI (ALFALFA), then constrain ΔG and λ_c with Bayesian likelihood formalism

Harry Desmond – Fifth force searches in galaxies

Desmond et al, Phys. Rev. D 98, 064015 (2018)

Magnitude of signal

 F_5 model: $\Delta G = G_N$, $\lambda_c = 5$ Mpc

ALFALFA data

Harry Desmond – Fifth force searches in galaxies

Desmond et al, Phys. Rev. D 98, 064015 (2018)

Investigating the noise

- Derives from measurement uncertainty and baryonic physics
- Convolve fifth-force likelihood with Gaussian of width $\sigma,$ and marginalise over σ

Constraints

Desmond et al, Phys. Rev. D 98, 064015 (2018)

Constraints

At maximum likelihood:

- λ_c = 1.8 Mpc
- $\Delta G/G_{N} = 0.025$
- Δ(logL) = 16
- 6.6 σ discrepancy of $\Delta G/G_N$ posterior from 0

Desmond et al, Phys. Rev. D 98, 064015 (2018)

Systematics

1 "Galaxy formation" physics (ram pressure, feedback etc) affects stars & gas differently, so may lead to similar signal

– Unlikely to correlate \vec{r}_{*} with gravitational environment and halo properties in same way as screened fifth force (?)

Systematics

1 "Galaxy formation" physics (ram pressure, feedback etc) affects stars & gas differently, so may lead to similar signal – Unlikely to correlate \vec{r}_* with gravitational environment and halo

properties in same way as screened fifth force (?)

2 Assumed ACDM for calculating density profiles and screening/fifth-force fields

– Difference should be small for { ΔG , λ_{c} } as low as here

Systematics

1 "Galaxy formation" physics (ram pressure, feedback etc) affects stars & gas differently, so may lead to similar signal
– Unlikely to correlate *r*_{*} with gravitational environment and halo properties in same way as screened fifth force (?)

- 2 Assumed ACDM for calculating density profiles and screening/fifth-force fields
 - Difference should be small for { ΔG , λ_{c} } as low as here
- 3 Calculation of DM density within ~100pc of halo centre
 - Affects inference of ΔG but not $\Delta \log(L) \lambda_{c}$

Probing Screened Fifth Forces B. Warps in galactic disks

- Potential gradient across disk bends it into U-shape
- At equilibrium:

$$z(x) = -a_{5,z} \frac{\Delta G}{G_N^2} \frac{|x|^3}{M_{\text{halo}}($$

Harry Desmond – Fifth force searches in galaxies

Desmond et al, Phys. Rev. D 98, 083010 (2018)

Probing Screened Fifth Forces B. Warps in galactic disks

Model using power-law halo profile with exponent n

Harry Desmond – Fifth force searches in galaxies

Desmond et al, Phys. Rev. D 98, 083010 (2018)

J003938.31+143951.2 $W_1 = -1.1 \times 10^{-4}$

J115012.10+065956.9 $w_1 = 1.7 \times 10^{-3}$

Constraints

Gas-star offsets

Constraints

Gas-star offsets

Stellar disk warps

Harry Desmond – Fifth force searches in galaxies

Desmond et al, Phys. Rev. D 98, 083010 (2018)

Validation Mock data with maximum-likelihood ΔG

• Refit many mock data sets generated at max-likelihood { ΔG , λ_{c} }

• Near-perfect agreement in reconstructed $\Delta G/G_N$ and $\Delta \log(L) \rightarrow$ mock data behaves exactly like real data

Harry Desmond – Fifth force searches in galaxies

Desmond et al, Phys. Rev. D 98, 083010 (2018)

Conclusions

- Galaxy structure probes fundamental physics in new regions of parameter space with potentially great sensitivity
- Environment dependence → require gravitational maps of local universe
- Two probes of chameleon & symmetron screening:
 - Separation of stars and gas
 - Warping of stellar disks
- Apparent signal at $\lambda_{c} \approx 2$ Mpc, $\Delta G/G_{N} \approx 0.02...$
- The future is bright:
 - Several signals still to explore (e.g. Jain & Vanderplas 2011)
 - ++ quantity and quality of data with upcoming surveys