Hunting Chameleons with the CAST Experiment at CERN

Justin Baier on behalf of the CAST collaboration

15th Patras Workshop on Axions, WIMPs and WISPs

 $3^{rd} - 7^{th}$ June 2019

University of Freiburg

The CAST Physics Programme

The CAST Physics Programme

• proposed 2003 as possible dark energy candidate (Phys. Rev. D 69, 044026)

scalar field with effective potential dependent on ambient matter / EM field

proposed 2003 as possible dark energy candidate (Phys. Rev. D 69, 044026)

scalar field with effective potential dependent on ambient matter / EM field

- proposed 2003 as possible dark energy candidate (Phys. Rev. D 69, 044026)
- scalar field with effective potential dependent on ambient matter / EM field

$$V_{eff}(\phi) = \frac{\Lambda^{4+n}}{\phi^n} + e^{\frac{\beta_m}{M_{Pl}}\phi}\rho_m + \frac{1}{4}e^{\frac{\beta_\gamma}{M_{Pl}}\phi}F_{\mu\nu}F^{\mu\nu}$$
Coupling to photons

photon <> chameleon conversion inside strong magnetic fields
Detection via Primakoff effect (GridPix)

Solar Chameleons

Search via Chameleon-Photon Coupling

- chameleon to photon conversion inside magnet bore by inverse Primakoff effect
- conversion probability: $p_{\phi \to \gamma}(L) \propto \beta_{\gamma}^2 B^2 L^2$
- photon detection via GridPix detector

GridPix Detector

Hunting Chameleons with the CAST Experiment at CERN

GridPix Detector

Background Rate

• background suppression by likelihood method derived from eventshape variables and calibration data

- \rightarrow background rate < 10⁻⁴/keV/cm²/s
- chip divided into two relevant areas for data analysis

Expected Signal

Data Taking Campaign 2014/15

Outlook Data Taking Campaign 2017/18

Data taking statistics:

- 106,5 h solar tracking
- 2288 h background
- 105 h calibration with ⁵⁵Fe source

Analysis ongoing!

Implementation of new features!

For more information check out the poster of Tobias Schiffer tomorrow!

Search via Chameleon-Matter Coupling

proposed 2003 as possible dark energy candidate (Phys. Rev. D 69, 044026)

scalar field with effective potential dependent on ambient matter / EM field

- proposed 2003 as possible dark energy candidate (Phys. Rev. D 69, 044026)
- scalar field with effective potential dependent on ambient matter / EM field

$$V_{eff}(\phi) = \frac{\Lambda^{4+n}}{\phi^n} + e^{\frac{\beta_m}{M_{Pl}}\phi}\rho_m + \frac{1}{4}e^{\frac{\beta_\gamma}{M_{Pl}}\phi}F_{\mu\nu}F^{\mu\nu}$$
Coupling to matter

- effective chameleon mass $m_{\rm eff}$ in material of density $\rho_m \rightarrow$ screening mechanism
- if at boundaries $E_{\phi} < m_{eff} \rightarrow reflection$

- chameleon to photon conversion inside magnet bore by inverse Primakoff effect
- conversion probability: $p_{\phi \to \gamma}(L) \propto \beta_{\gamma}^2 B^2 L^2$
- photon detection via GridPix detector

chameleons pass through magnet bore and focused onto detector by X-ray telescope

magnetic field of no interest, only sun tracking and XRT important

chameleons pass through magnet bore and focused onto detector by X-ray telescope

- magnetic field of no interest, only sun tracking and XRT important
- chameleon detection via mechano-optical KWISP detector

chameleons pass through magnet bore and focused onto detector by X-ray telescope

- magnetic field of no interest, only sun tracking and XRT important
- chameleon detection via KWISP detector

Michelson Interferometer Setup

Expected Force on Membrane

Chameleon flux at Earth

+ distance Sun-Earth, chopper efficiency, magnet bore diameter

Data Taking Campaign 2017

Upgrade 2018 – Fabry-Pérot Interferometer

Features:

- Fabry–Pérot interferometer
- IR laser (Coherent Mephisto 500mW)
- fiber optic circulator
- injection and detection bench
- chopper: DLP® LightCrafter™ 9000
 - aluminum micromirrors
 - \rightarrow ±12° tilt angle
 - > max. freq. for binary pattern: (9467 ± 1) Hz

- 14 solar tracking runs
- analysis ongoing

Outlook

Chameleon

flux

XRT

->

- additional fiber optics (mode cleaning)
- improved mechanic/acoustic isolation (reduce background noise)
- homodyne detection
 (insensitive to frequency fluctuations of laser)
- coated membrane

(change resonance frequency, gain from membrane Q-factor)

 membrane cooling (reduce thermal noise, gain factor >100)

Detection bench

Summary

- CAST searches for solar chameleons following two complementary approaches
- GridPix aims for the detection of X-rays originating from the chameleon-photon conversion inside the CAST magnet
 - data taking 2014/15: no signal above background

for $1 < \beta_{\rm m} < 10^6 \rightarrow \beta_{\gamma} \lesssim 5.7 \times 10^{10}$

data taking 2017/18: analysis ongoing

• KWISP looks for tiny displacements of a thin membrane caused by the reflection of chameleons

• data taking 2017: no signal above background, upper force limit of 80 pN

 $\rightarrow \beta_{\gamma} \le 10^{11}$ (for a certain $\beta_{\rm m}$)

data taking 2018: analysis ongoing

Stay tuned for more news from GridPix and KWISP!

Also check out the axion search performed by CAST!

Contact: Justin Baier - justin.sillvan.baier@cern.ch

CAST Spokesperson: Konstantin Zioutas - Konstantin.Zioutas@cern.ch

Website: cast.web.cern.ch

FREIBURG

Backup

- γ enters detector volume through X-ray window in the cathode
- gas atoms get ionized (Ar/iC₄H₁₀ 97.2/2.3 @ 1050 mbar) \rightarrow primary e⁻
- e⁻ drift towards amplification region and create e⁻ shower ($E_{drift}=0.5 \frac{kV}{cm}$, $L_{drift}=3$ cm, $E_{amp}=50 \frac{kV}{cm}$, gas gain G≈2500)
- e⁻ shower of single primary e⁻ collected on single pixel

First Chameleon Search at CAST with a SDD

- Silicon Drift Detector (SDD) built from commercially available components
- Data taking end of 2013, obtained limit:

 $\beta_{\gamma} \leq 9.3 \times 10^{10}$ at 95% C.L. (Physics Letters B 749 (2015) 172–180)

(above upper limit given by solar luminosity constraints)

