

Current experimental efforts in laser-driven strong-field QED

Gianluca Sarri

School of Mathematics and Physics, Queen's University Belfast, UK g.sarri@qub.ac.uk

DESY, Hamburg, 16/04/2019

Main Collaborators

Gianluca Sarri

Slide 1/13

Introduction

⇒ Radiation Reaction is one of the oldest and most fundamental problems in electromagnetism: How do we correctly model the electron dynamics if we include radiative losses?

 $m\frac{du^u}{ds} = eF^{uv}u_v$

0. Classical Lorentz force

X No energy loss

Damping force (radiation reaction term)
X Classical renormalisation (point-like electron)
X Runaway solutions! (diverging acceleration even without external field)

2. LL Equation

$$n\frac{du^{u}}{ds} = eF^{uv}u_{v} + \frac{2}{3}e^{2}\left(\frac{e}{m}(\partial_{\alpha}F^{uv})u^{\alpha}u_{v} - \frac{e^{2}}{m^{2}}F^{uv}F_{\alpha v}u^{\alpha} + \frac{e^{2}}{m^{2}}(F^{\alpha v}u_{v})(F_{\alpha \lambda}u^{\lambda})u^{u}\right)$$

No runaway solutionsValid in classical relativity

 $\begin{array}{l} \lambda >> \alpha \lambda_{\rm C} \ \ ({\rm localised wavefunction}) \\ F << F_{\rm cr} / \alpha \ ({\rm classical \ critical \ field}) \end{array}$

Gianluca Sarri

Slide 2/13

Quantum Radiation Reaction

⇒ The classical treatment of radiation reaction neglects three main additional phenomena:

1. The energy of a single emitted photon can not exceed that of the electron

3. Production of electron-positron pairs (important only for $\chi \ge 1$)

QUEEN'S

NIVERSITY

[1] C. Bula et al., PRL 76, 3116 (1996).

[2] D. L. Burke et al., PRL 79, 1626 (1997).

[3] K. Poder et al., PRX 8, 031004 (2018).

 $[4]\,J.$ Cole et al., PRX 8, 011020 (2018).

Gianluca Sarri

Slide 4/13

A parameter space

	e⁻ energy (GeV)	ΔΕ / Ε	Electron beam charge (pC)	Ι _L (W/cm²)	a _o	χ	g (χ)
GEMINI	2	10%	100	4x10 ²⁰	10	0.2	47%
FACET-II	10	< 1%	600	2x10 ²⁰	1 - 5	0.9	19%
LUXE	17	< 1%	600	1021	1 - 15	4	5%

Gianluca Sarri

Slide 4/13

A fully laser-driven setup Astra-Gemini experiments

Electron-laser collisions

What do we see?

What do we see?

Gianluca Sarri

Slide 7/13

Collision diagnostic

Gianluca Sarri

Slide 8/13

Collision diagnostic

Gianluca Sarri

Slide 9/13

Comparison with theoretical models

Gianluca Sarri

Slide 10/13

CCF approximation

Why are the semiclassical and QED model not reproducing the data exactly?

CCF approximation

Why are the semiclassical and QED model not reproducing the data exactly?

OR, we could be in a situation where the **constant cross-field approximation** is not strictly valid

The SFQED experiment at FACET-II

Measurables

 10^{7}

10

10⁵

 10^{4}

 10^{3}

 10^{2}

10¹

10^{0 L}

0.8

0.7

0.6

0.4

0.3

0.1

0

0

 $\frac{\Delta \gamma}{\gamma_0}$ 0.5

SLAC LL

GEMINI LL

SLAC semi-classical

GEMINI semi-classical

Average number of positrons per shot

Pair production

 $\sim 10^{6}$

 10^{3}

C1~1

10

Dimmensionless laser amplitude a_0

258%

032%

Quantum radiation reaction

 $\zeta_{1} \sim$

FACET II (SLAC) GEMINI (CLF)

20

LUXE (DESY)

15

Series of experimental campaigns approved at SLAC – FACET II, to study face-on collisions (10 GeV e⁻ beam and a 20 TW laser)

Main diagnostics: $-\gamma$ -ray spectrometer

- γ -ray beam profiler
- electron spectrometer
- positron spectrometer

Conclusions and Outlook

- First experimental observation of high-field QED phenomena in a fully optical setup obtained at the Central Laser Facility
- For the next steps we need: A. Higher laser intensities
 - B. Improved pointing and spectral stability of electron beams
 - C. Higher electron energy

- First experimental observation of high-field QED phenomena in a fully optical setup obtained at the Central Laser Facility
- For the next steps we need: A. Higher laser intensities
 - B. Improved pointing and spectral stability of electron beams
 - C. Higher electron energy

- SFQED experimental campaigns approved at FACET-II (SLAC)
- $E \sim 10 \text{ GeV}, a_0 \sim 5$

- Extreme-Light Infrastructure Nuclear Pillar
- 2 x 10 PW laser beams
- First commissioning experiments early 2020

- European consortium for a plasma-based accelerator of 5 GeV electron beams of industrial quality
- High-field QED studies proposed as a pilot application

Thanks for your attention!

Gianluca Sarri

g.sarri@qub.ac.uk

Main references:

- G. Sarri et al., Phys. Rev. Lett. 113, 224801 (2014)
- D. J. Corvan et al., Rev. Sci. Instrum. 85, 065119 (2014)
- D. J. Corvan et al., Opt. Expr. 24, 3127 (2016)
- G. Samarin et al., J. Mod. Opt. 65, 1362 (2018)
- K. Poder et al., Phys. Rev. X 8, 031004 (2018)
- J. Cole et al., Phys. Rev. X 8, 011020 (2018)