

Overview

Beate Heinemann (DESY and University of Freiburg)

April 16th 2019

INTRODUCTION

- Goal: Develop new experiment at European XFEL to test quantum physics in unexplored regime using high intensity laser
 - Electron+Laser: $e + n\omega \rightarrow \gamma e^-$ or $e + n\omega \rightarrow e^-e^+e^-$
 - Photon+laser: $\gamma + n\omega \rightarrow e^+e^-$
- Relevant to many phenomena, e.g
 - Astrophysics: Hawking radiation, surface of neutron stars, early Universe (e.g. inflation)
 - Condensed matter and atomic physics (e.g. dielectric breakdown)
 - Accelerator physics: high energy e⁺e⁻ colliders
 - Testing theoretical predictions in novel regime => gain deeper understanding of quantum physics
- Schwinger field has never been reached experimentally in clean environment
 - Exciting to be the first to explore this ... we might be surprised what we find!

 \times

LASER AND PHOTON BEAM

- Use Laser to generate electric field
- Use high energy electron beam to create high-energy photons

$$\xi = \frac{eE_L}{m_e\omega_L c} \qquad \qquad \chi \approx \gamma \frac{\varepsilon}{\varepsilon_S} \propto \gamma \sqrt{E_L}$$

- Laser power required to reach Schwinger field ($\chi_{\gamma} \sim 1$):
 - Non-relativistic photons:
 - EU.XFEL, E_v≈10 GeV: I≈10²⁰ W/cm²
 - ELI-NP, E_v≈GeV:

- I=2x10²⁹ W/cm²

 - I≈10²² W/cm²
- => Much beyond currently achievable values
 - => Can use well-tested laser technology
 - => State-of-the-art laser needed

LUXE CONCEPTUAL DESIGN

PHOTON LASER COLLISIONS

Plan to also study electron directly in laser field (ω is a laser photon):

- Study Compton process: $e^- + n\omega \rightarrow e^- + \gamma$
- Study "trident" process: $e^- + n\omega \rightarrow e^- e^+ e^-$

ABSORBING LIGHT WITH LIGHT

Non-perturbative regime: departure from power-law

 $\xi \gg 1: R_{e^+} \propto \chi^2 \exp\left(-\frac{8}{3\chi}\right)$

LOCATIONS IN EU.XFEL TUNNEL

Location in XFEL: two options being explored

- 1. XSDU1: right before the beam dump (after all undulators)
- 2. XTD20: At the start of the 2nd EU.XFEL FAN
 - Would imply early construction of extraction for 2nd EU.XFEL fan

Design aims to have no impact on photon science programme

• Use only 1 of the 2700 bunches in bunch train (kicked out by kicker)

LOCATIONS IN THE EU.XFEL TUNNEL

XSDU1 location

XTD20 location

| F. Burkart | XFEL MAC | LUXE

LUXE LASER PARAMETERS

Ti:Sapphire technology Pulse length: 35 fs Wavelength: 800 nm Focal length: 1m Focus area: 100 μm² Frequency: 1-10 Hz

	STAGE 0	STAGE 1	
Energy [J]	0.35	7.0	
Power [TW]	10	200	
Intensity [W/cm^2]	10 ¹⁹	2x10 ²⁰	
ξ Parameter	1.5	6.8	
χ Parameter	0.3	1.4	

- Initial Stage (stage 0):
 - proof of principle, less costly, smaller laser
 - similar to E144 but higher precision
- Design Stage (stage 1):
 - Reach critical field strength => pioneering new territory of quantum theory
 - Requires about 100 m² space for laser

FUNDING AND INTERNATIONAL LANDSCAPE

International landscape:

- Several (in part complementary) efforts world-wide proposed to reach Schwinger field
- RF beam at EU.XFEL very well suited
- FACET II should achieve similar sensitivities

MONTE CARLO SIMULATION

Files available for both processes

- Thanks to Tony Hartin!!
- For photon-initiated process, use photons produced by Geant (Sasha Borysov)

Parameter	value
E _e [GeV]	17.5
Laser Energy [J]	5 values: 0.2, 0.35, 0.5, 0.7, 1.0
Pulse length [fs]	35 (gaussian)
Pulse width [um]	5
Beam width [um]	5
#e/bunch	6.25e9
Xing angle	0.3 radians (17 degrees)

Corresponding values:

Energy [J]	0.2	0.35	0.5	0.7	1.0
Intensity [10 ¹⁸ W/cm ²]	5.7	10	14	20	29
a0 or ξ	1.1	1.5	1.8	2.2	2.6
χ	0.24	0.32	0.38	0.45	0.54

LUXE: EVENT RATE VS LASER INTENSITY

Stage-0:

- Laser intensity: 1x10¹⁹ W/cm²
- Observe steep rise of rate $\,\propto\,\xi^{2n}$ Stage-1
- Laser intensity: 2x10²⁰ W/cm²
- Well into non-perturbative regime
- Observe rate $\propto \chi^2 \exp\left(-\frac{8}{3\chi}\right)$

Real time required:

- Laser rate up to 10 Hz
- 1M laser shots ≈ 24 hours

(assumes $6x10^9$ electrons/bunch, $E_e = 17.5$ GeV)

DESIGN OF DETECTORS

Particle rates vary between ~10 to 10⁹ => choose optimal detector technologies and magnets needed to

- a) Count particles
- b) Measure energies of particles

DRAFT TIME SCALE: PHASE-0

- Summer 2019:
 - Determine feasibility, work plan and possible time scales for the two locations in XFEL tunnel
- October 2019:
 - Publish letter of intent (?)
- November 2019
 - Application for ERC synergy grant (synergies of laser, particle physics and accelerator physics): for phase-0 "prototype" experiment
 - Obtain letter of support by management and council of EU.XFEL
- Nov/Dec 2020
 - Start of installation (?): May extend over two shutdowns (should know in summer 2019)
- 2021-2022 or 2022-2023: prototype experiment (stage-0)
 - About 2-3 weeks per year likely sufficient but would try to take as much data as possible (if we can prove to be parasitic may be able to run much more)
- 2023/2024:
 - Publish results of phase-0 experiment

DRAFT TIME SCALE: PHASE-1

- 2023/2024:
 - Install more powerful laser (need to get money for it before)
- 2025-2027: Data taking with high-power laser (stage-1)
 - Interesting to run at different energies, beam currents,... configurations
 - Plan to benefit from requirements of other experiments
 - Would like to run as much as possible

FUNDING

DESY

- strategy fund (~200k): ends end of 2019 => will reapply shortly
- The directorate of DESY has included in its financial planning support for the civil construction (for a volume of up to 3 M Euro) for the LUXE experiment, pending successful application of an ERC or other equivalent sources.

Helmholtz Innovation Pool (~500k)

- for laser developments
- Money has not quite arrived yet as far as I know

Grants in Israel (GIF, ISF, Minerva submitted, ~400K): news this summer?

ERC synergy grant (planned Nov. 2019, ~10M)

- Feasibility studies getting more and more advanced
- So far no show-stoppers identified
- Funding applications have generally been quite successful
- Positive feedback from XFEL.EU scientific advisory committee received
- A lot of things remain to be done!

BACKUP SLIDES

EXPERIMENT E144 AT SLAC

Experiment at SLAC in 1990s achieved $\chi \le 0.25$

- Electron beam energy: 46.6 GeV
- Did observe the expected strong rise with ξ^{2n} but not the asymptotic limit

XSDU1 (near beam dump)

- Modification of beam line
 - downtime to be evaluated.
- Potential delay due to legal situation
 - additional extraction/beam dump, beam line) → plan-approval procedure.
- Maybe radiation towards XTD7
 - additional shiedling required.
- New building at the surface
 - funded by DESY
- Background from beam dump for experiment?
 - Being evaluated

XTD20 (end of LINAC)

- Uses existing building and beam line design.
- Modification of extraction beam line
 - downtime to be evaluated.
 - Extraction and beam line already included in plan-approval.

- Laser beam line transport via XS1 shaft.
- Early implementation of the beam extraction for future XFEL upgrade (2nd XFEL fan) and/or test beam area.
- Additional demonstration of the flexibility of the facility.