LUXE challenges, simulation and overall plans

Oleksandr Borysov

LUXE Workshop DESY, April 17, 2019

Outline

LUXE – Laser Und XFEL Expriment

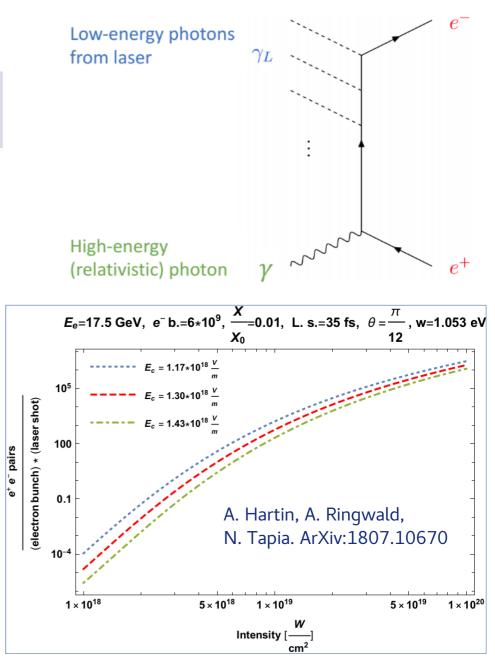
- Introduction
- Design of experimental setup
- MC simulation
- Occupancy of LUXE subsystems

Laser-assisted pair production

$$\gamma + n\omega \rightarrow e^+e^-$$

One photon pair production (OPPP) at ultra high intensity - non-perturbative physics

The rate of laser-assisted (OPPP) rate:


 $\Gamma_{\rm OPPP} = \frac{\alpha m_e^2}{4\,\omega_{\rm i}} \, F_{\gamma}(\xi, \chi_{\gamma})$

$$\xi \equiv \frac{e \left| \mathbf{E} \right|}{\omega m_e} = \frac{m_e}{\omega} \frac{\left| \mathbf{E} \right|}{\mathbf{E}_c}, \qquad \chi_{\gamma} \equiv \frac{k \cdot k_i}{m_e^2} \,\xi = (1 + \cos \theta) \, \frac{\omega_i}{m_e} \, \frac{\left| \mathbf{E} \right|}{\mathbf{E}_c}$$

Use bremsstrahlung photons produced by XFEL beam hitting tungsten target.

$$\Gamma_{\rm BPPP} = \frac{\alpha \, m_e^2}{4} \int_0^{E_e} \frac{\mathrm{d}\omega_i}{\omega_i} \, \frac{\mathrm{d}N_\gamma}{\mathrm{d}\omega_i} \, F_\gamma(\xi, \chi_\gamma(\omega_i))$$

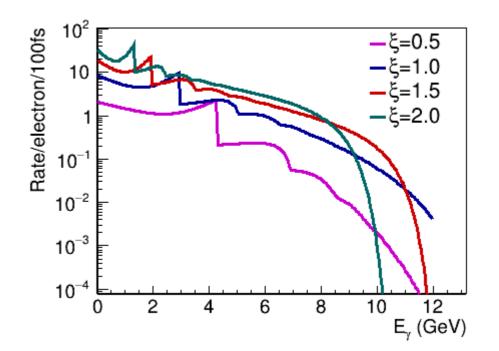
$$\Gamma_{\rm BPPP} \to \frac{\alpha \, m_e^2}{E_e} \frac{9}{128} \sqrt{\frac{3}{2}} \, \chi_e^2 \, e^{-\frac{8}{3\chi_e} \left(1 - \frac{1}{15\xi^2}\right)} \frac{X}{X_0}$$

High Intensity Compton Scattering

 e^{-}

$$e^- + n\omega \rightarrow e^- + \gamma$$

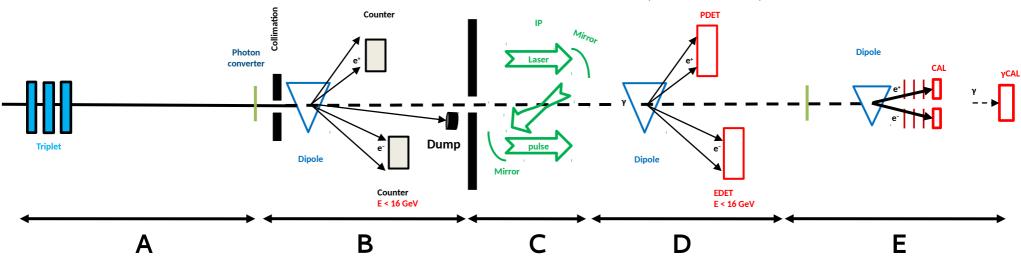
The rate of High Intensity Compton Scattering (HICS) proportional to:

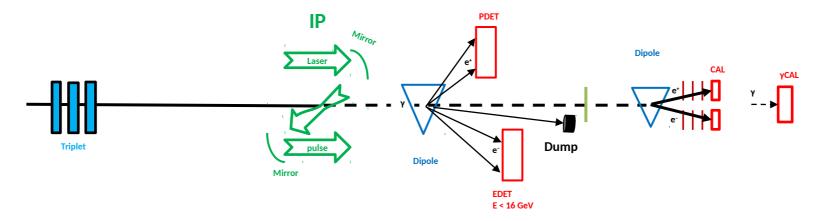

$$\sum_{\mathbf{n}} \delta^{(4)} \left[p_{\mathbf{i}} + k \frac{\xi^3}{2\chi_{\mathbf{i}}} + nk - p_{\mathbf{f}} - k \frac{\xi^3}{2\chi_{\mathbf{f}}} - k_{\mathbf{f}} \right]$$

Momentum conservation is a sum over external field photon contributions, *nk*

Even for *n*=0 there is an irreducible contribution:

$$p_{\rm i} + k \frac{\xi^3}{2\chi_{\rm i}} \to p_{\rm i}^2 = m^2(1+\xi^2)$$


Observation of Compton edge shift


 $n\omega$

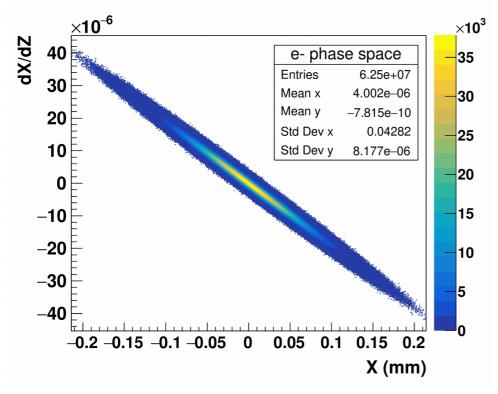
LUXE Setup

Photon-Photon collisions at LUXE (OPPP)

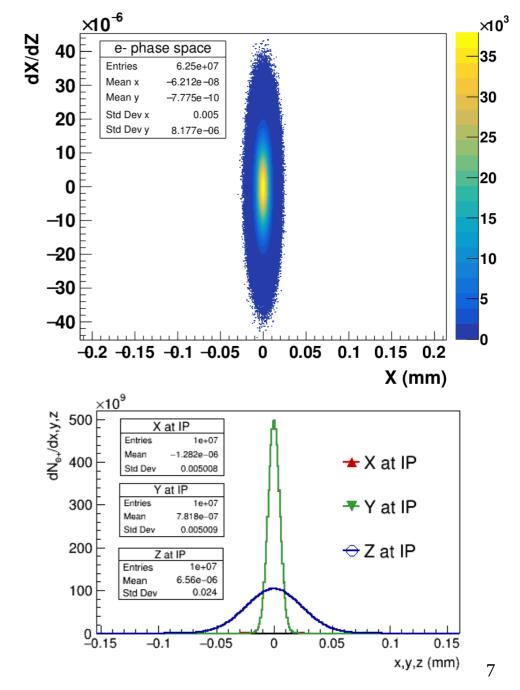
Electron-Photon collisions at LUXE (HICS)

Electron and laser beam parameters

E_pulse, J	Crossing angle, rad		Laser $\sigma_{z}^{}$, ps	N Electrons			
3.5	0.3	10	0.035	6.25E+09	5.0	5.0	0.08


EU.XFEL electron beam:

- Electron beam parameters are defined by EU.XFEL;
- Energy 17.5 GeV;
- Emittance 1.4 mm mrad.


Laser:

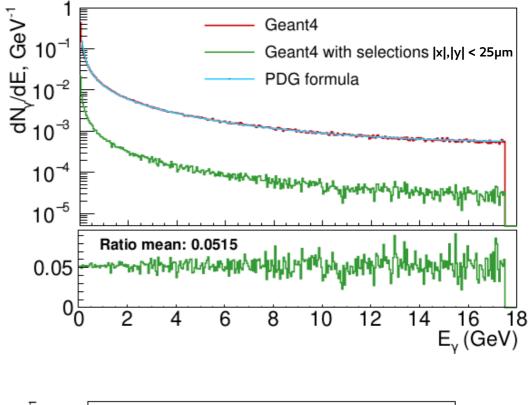
- Laser wavelength = 800.00 nm (1.5498 eV);
- Circular polarized;
- Power:
 - Stage_0: 1.0e19 W/cm², (0.35J, 100 μm², 35 fs);
 - Stage_0.5: 2.9e19 W/cm², (1.0J, 100 μm², 35 fs);
 - Stage_1: 1.0e20 W/cm², (3.5J, 100 μm², 35 fs);

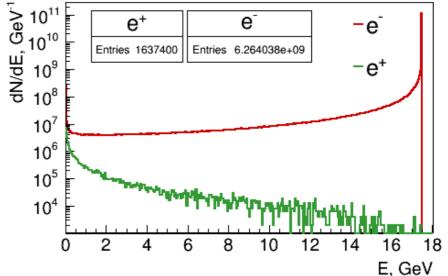
Electron beam settings for simulation

- Gaussian distribution;
- Beam emittance: 1.4 mm mrad;
- Focus at IP;
- Target: 5 m upstream of IP.

Bremsstrahlung production Gent4 vs PDG formula

PDG formula for bremsstrahlung production:

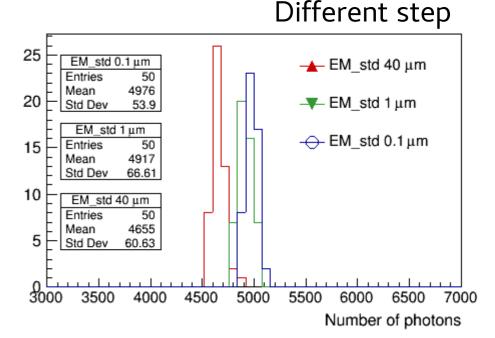

$$\omega_i \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}\omega_i} \approx \left[\frac{4}{3} - \frac{4}{3}\left(\frac{\omega_i}{E_e}\right) + \left(\frac{\omega_i}{E_e}\right)^2\right] \frac{X}{X_0}$$

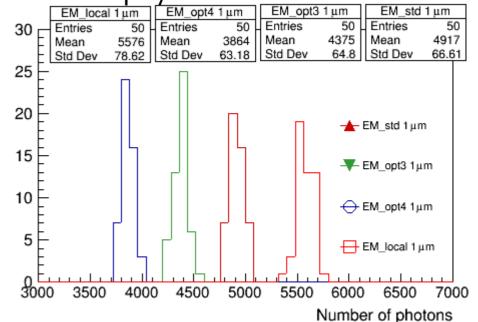

- Gaussian beam;
- Tungsten target 1%X0 (35µm), 2m from
- Two histograms are compered:
 - |x| < 1mm and |y| < 1mm (read);
 - |x| < 25µm and |y| < 25µm (green).

Νγ	4.91E+06
Nγ, E >7GeV	4.66E+05

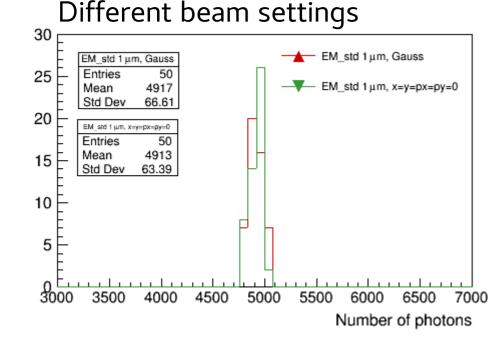
- Electrons and positrons observed after the target ($\theta < 17^{\circ}$).
- Spectra and table data correspond to one BX.

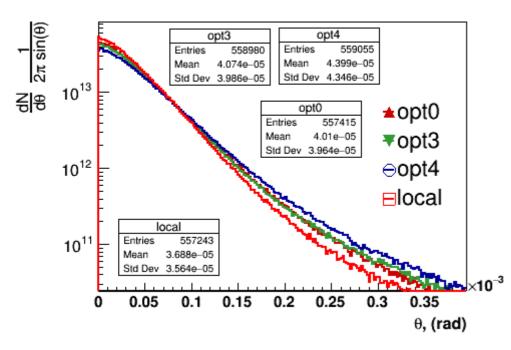
N e-	6.26E+09
N e-, < 16 GeV	1.80E+08
N e+	1.62E+06



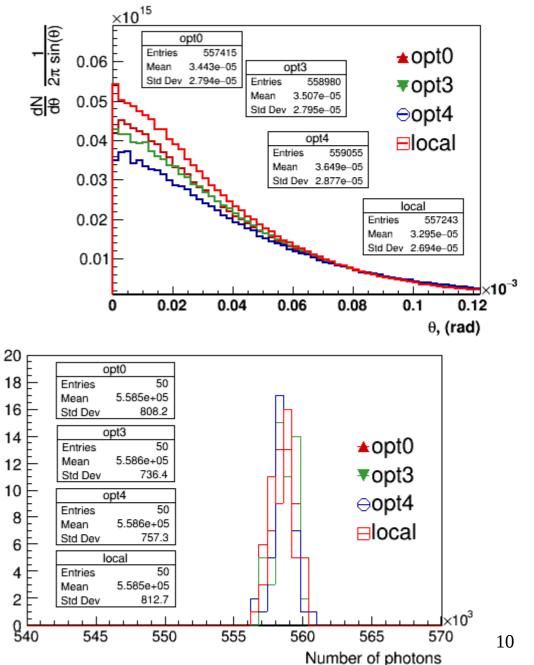

Geant4 simulation with different step, different physics lists, different beam

- Gaussian beam, focused on IP;
- Tungsten target 1%X0 (35µm) thickness
- 5 m from IP;
- 6.25 M electrons (BX/1000);
- Production cut: $1 \ \mu m$.


Number of photons inside |x|<25um and |y|<25um;

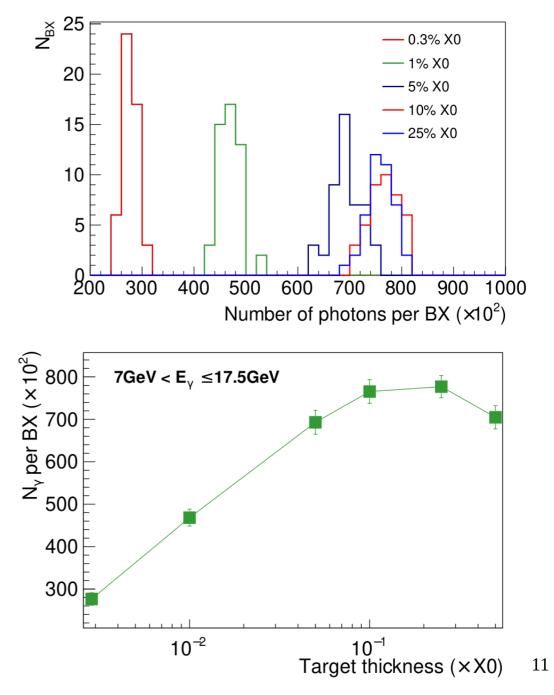

Different physics lists

9

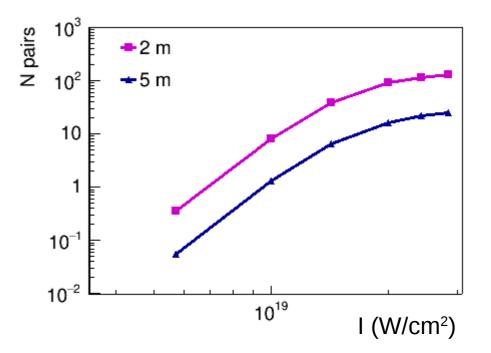


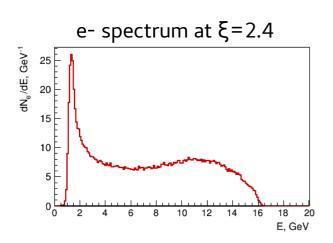
y angular distribution for different physics lists

- Angular distribution is the widest for option_4 physics list.
- The difference in angular distribution explains the observed difference in the number of photons at IP.
- Total number of photons in forward region is identical for all physics lists.

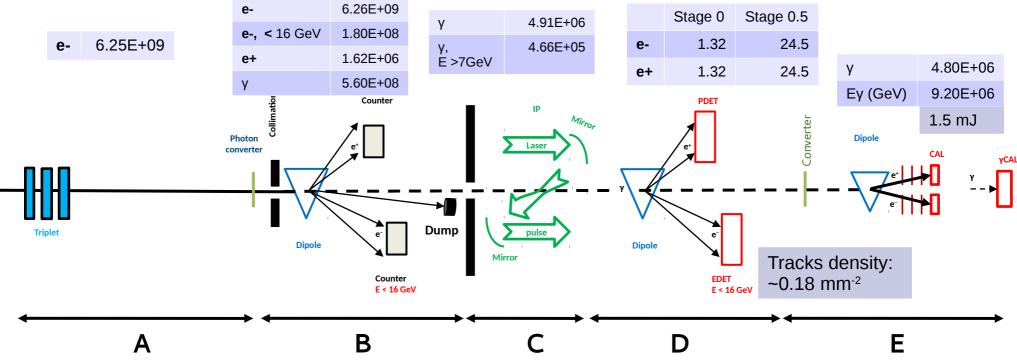

Number of photons inside |x|<1.5 m and |y|<1.5 m

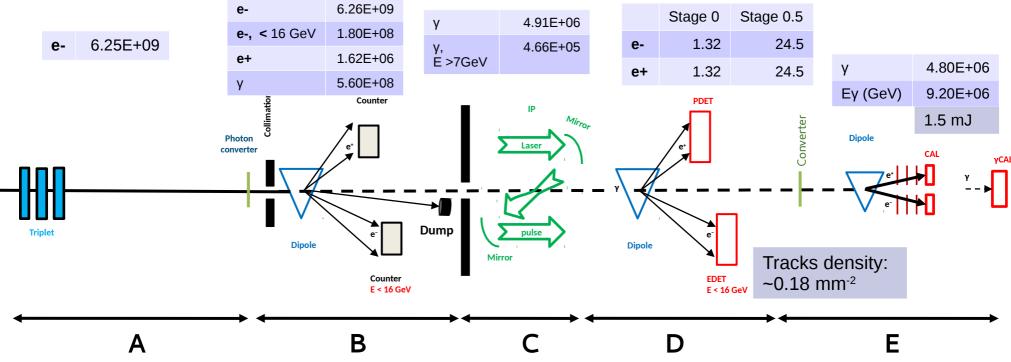
Different target thickness


- Gaussian beam;
- Tungsten target 5m from IP;
- Photons selection :
 - |x| < 25um and |y| < 25um
 - E > 7 GeV.

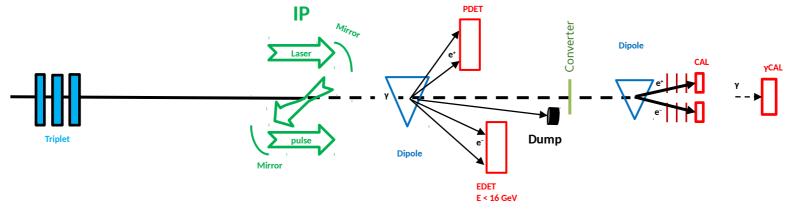

 By changing a target thickness (to some extent) for a given distance between target and IP the photon flux and pairs production rate can be set at reasonable level.

One photon pair production in MC study

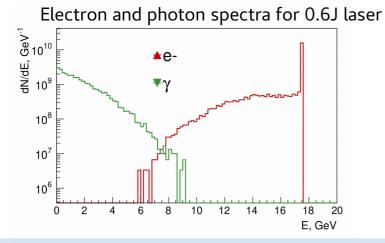

- Tungsten target 35 µm (1%X0) for bremsstrahlung production;
- Target is 5 m and 2 m upstream of IP;


ξ	I (W/cm ²)	N pairs 2m	N pairs 5m	N2/N5	
1.16	5.71E+018	0.356	0.0557408	6.39	
1.54	1E+019	7.89241	1.31872	5.98	
1.84	1.429E+019	37.7175	6.52168	5.78	
2.18	2E+019	89.0315	16.3754	5.44	
2.4	2.429E+019	114.31	21.6355	5.28	
2.6	2.857E+019	128.306	24.5345	5.23	

Photon-Photon collisions at LUXE


Area	Description	e-	e+	у	Notes
А	Incident beam	6.25E+09			XFEL beam sigma_xy = 5μm, emittance: 1.4e-3 mm mrad
В	Target	6.26E+09	1.62E+06	5.60E+08	Tungsten 35 μm, (1%X0), 5 m upstream of IP
С	IP			4.91E+06	Geometrical cut x <25μm && y <25μm is applied to match laser transverse size
	E > 7 GeV			4.66E+05	
	E > 12 GeV			1.92E+05	
D	Detectable				
	Stage 0	1.32	1.32		Laser: 1.0e19 W/cm², (0.35J, 100µm², 35 fs)
	Stage 0.5	24.5	24.5		Laser: 2.6e19 W/cm², (1.0J, 100µm², 35 fs); Track density up to 0.18 mm²
E	y detector	4.80E+06 Total energy: 9.2e6 GeV = 1.5mJ			
	Wire target	~100	~100		Tungsten wire converter target, D=10 μm

Photon-Photon collisions at LUXE



- Bremsstruhlung production monitor (section B): Cherenkov counters and calorimiters;
- OPPP measurements (section D): spectrometer (dipole + few layers of tracking detectors) and calorimiters;
- Forward detector (section E): low X0 target, spectrometer (dipole + few layers of tracking detectors), Cherenkov counters and calorimiters;
- yCAL: calorimeter capable of handling high photon flux.

Electron-Photon collisions at LUXE

MC simulation with 6E9 electrons per bunch;

Number of e- E < 16.GeV	Number of y	
2.18E+09	5.74E+09	
1.16E+09	2.31E+09	
6.82E+08	1.24E+09	
8.47E+07	1.35E+08	
	E < 16.GeV 2.18E+09 1.16E+09 6.82E+08	

- Electron detection: dipole with Cherenkov counters;
- Trident positron detection (~0.1 per BX at 0.6J observed): spectrometer (dipole + few layers of tracking detectors) and calorimiter.
- Forward detector: low X0 target, spectrometer (dipole + few layers of tracking detectors), Cherenkov counters and calorimiters;
- yCAL: calorimeter capable of handling high photon flux.