Numerical Support for LUXE

Nina Elkina

in collaboration with Tom Teter and Matt Zepf

thanks for valuable discussions Ben King and Felix Karbstein

seed γ HI-Jena

April 16, Jena

Plasma simulations at HI-Jena

Tom

Numerical Support to

Nina Elkina

scattering simulation (vacuum birefringence)¹

cut off $\varepsilon_{\min} = 1$

¹B. King, N. Elkina, Vacuum birefringence in high-energy laser-electron collisions, Phys. Rev. A 94, 062102, 2016 Nina Elkina in collision with Tom T INUMERICAL SUDDON

features of PIC-ANTARES code

$$\left(\frac{\partial}{\partial t} + \frac{\vec{p}}{\gamma m} \cdot \frac{\partial}{\partial \vec{r}} + \vec{F} \cdot \frac{\partial}{\partial \vec{p}}\right) f(\vec{r}, \vec{p}, t)$$

$$= \underbrace{\int d^{3}k \, w_{rad}^{\vec{E}, \vec{B}}(\vec{k}, \vec{p} + \vec{k}) f(\vec{r}, \vec{p} + \vec{k}, t)}_{\text{GAIN}} - \underbrace{f(\vec{r}, \vec{p}, t) \int d^{3}k \, W_{rad}^{\vec{E}, \vec{B}}(\vec{k}, \vec{p} + \vec{k})}_{\text{GAIN}} + \underbrace{f(\vec{r}, \vec{p}, t) \int d^{3}k \, W_{rad}^{\vec{E}, \vec{B}}(\vec{k}, \vec{p} + \vec{k})}_{\text{GAIN}} + \underbrace{f(\vec{r}, \vec{p}, t) \int d^{3}k \, W_{rad}^{\vec{E}, \vec{B}}(\vec{k}, \vec{p} + \vec{k})}_{\text{GAIN}} + \underbrace{f(\vec{r}, \vec{p}, t) \int d^{3}k \, W_{rad}^{\vec{E}, \vec{B}}(\vec{k}, \vec{p} + \vec{k})}_{\text{GAIN}} + \underbrace{f(\vec{r}, \vec{p}, t) \int d^{3}k \, W_{rad}^{\vec{E}, \vec{B}}(\vec{k}, \vec{p} + \vec{k})}_{\text{GAIN}} + \underbrace{f(\vec{r}, \vec{p}, t) \int d^{3}k \, W_{rad}^{\vec{E}, \vec{B}}(\vec{k}, \vec{p} + \vec{k})}_{\vec{E}, \vec{E}, \vec{E},$$

om

- Specific features of PIC-ANTARES code
- Descent event generators
- polarization effects
- norm-conserving integrators
- Adaptive mesh and particles

- overview of LUXE
- update on bremstrahlung spectrum
- lessons from SLAC-144
- Measure Laser Pulse with Compton scattering

LUXE and SLAC

	λ	I, a ₀	εe	ε_{γ}	χ_e/χ_γ	<i>a</i> 0
SLAC	527 nm	$10^{18}W/cm^{2}$	47 GeV	29.2GeV	0.3/0.2	0.3
LUXE	800 nm	$10^{20}W/cm^{2}$	17.5 GeV	17.5 GeV (?)	0.80109	4-6

Nina Elkina in collaboration with Tom 1 INUMERICAL Support TO

matching perturbative/non-perturbative QED

$$F_{\gamma}(z_{0}, \chi_{\gamma}) = \sum_{n>n_{0}}^{\infty} \int_{1}^{v_{n}} \frac{dv}{v\sqrt{v(v-1)}} \Big[2J_{n}^{2}(z_{v}) - \xi^{2}(2v-1)(J_{n+1}^{2}(z_{v}) + J_{n-1}^{2}(z_{v}) - 2J_{n}^{2}(z_{v})) \Big]$$

Nina Elkina

with Tom T Numerical Support to

First order processes (with polarization effects)²

$$\frac{dW_{\gamma}}{d\varepsilon_{\gamma}} = \frac{-\alpha m^{2}}{\varepsilon_{e}^{2}} \left\{ Ai_{1}(x) + \left[\frac{g(\phi)}{x} + \chi_{\gamma} \sqrt{x} \right] Ai'(x) \right\}, \quad (1)$$

$$\frac{dW_{e}}{d\varepsilon_{e}} = \frac{+\alpha m^{2}}{\varepsilon_{\gamma}^{2}} \left\{ Ai_{1}(x) + \left[\frac{g(\phi)}{x} - \chi_{\gamma} \sqrt{x} \right] Ai'(x) \right\}, \quad (2)$$

where polarization effects are in $g(\phi) = 2\cos^2 \phi + 1$ photon emission pair production

²B. King, N. Elkina, H. Ruhl, Photon polarization in electron-seeded pair-creation cascades, PhysRev. B, 2013 Elkina&Fedotov, 2011
Nina Elkina in contractions with the contraction of the second second

Setup
$$heta=17^{o}$$
, $a_{0}=$ 6, $\hbar\omega=17.5\, {\it GeV}$, 3

Γom

<u>vume</u>rical Support to

³partially simulated on Hemera cluster

Bremstrahlung spectra, e^- : 17.5 GeV (GEANT4)

4

Tom&Evgenii's simulation

Pair yield depends strongly on laser pulse structure

Nina Elkina in collaboration with Tom 1 NUMERICAL Support TO

Homework: SLAC144

Tom T Numerical Support to

Nina Elkina

Reconstruction of Laser Pulse at SLAC

- 1. Laser diagnostics [Shmakov's PhD thesis]
 - $\circ~$ laser energy: measured by a leakage monitor behind mirror
 - $\circ\;$ pulse duration: single shot autocorrelation , streak camera
 - $\circ\,$ focal spot: attenuated refocused pulse equivalent target method after interaction
- 2. Particle side [Horton's PhD thesis]
 - $\circ~$ Cerenkov monitors to measure forward going photons

0

Nina Elkina in collaboration with Tom T INUMERICAL Support TO

Nonlinear Compton scattering

$$\frac{dW_n(\omega')}{d\omega'} = \frac{e^2 m^2 n_e}{16\pi\varepsilon^2} \Biggl\{ -4J_n^2(z) + a_0^2 \Biggl(2 + \frac{u^2}{1+u} \Biggr) \Bigl[J_{n-1}^2(z) + J_{n+1}^2(z) - 2J_n^2(z) \Bigr] \Biggr\}$$

where
$$u = \frac{k_{\mu}k'^{\mu}}{k_{\mu}p'^{\mu}} \simeq \frac{\omega'}{\varepsilon - \omega'}, \quad u_1 = \frac{2k_{\mu}p^{\mu}}{m^2} \simeq 2\frac{\varepsilon\omega_0(1 - \cos\alpha)}{m^2}$$

energy of scattered photon

$$\omega'(\theta) \simeq \varepsilon \cdot \frac{u_1}{(1+u_1) + \gamma^2 \theta^2}$$

maximum at $\theta = 0$

$$\omega'_{\max} \simeq \varepsilon \cdot rac{u_1}{(1+u_1)}, \quad \varepsilon = \gamma m_e c^2$$

Nina Elkina

Tom T INUMERICAL Support TO

1st harmonics+mass shift

first harmonic with mass shift $\overline{m}^2 = m^2(1+a_0^2)$

$$\frac{dW_{1}(\omega')}{d\omega'} = \frac{e^{2}m^{2}n_{e}}{16\pi\varepsilon^{2}} = \left\{a_{0}^{2}\left[2 + \frac{u^{2}}{1+u} - 4\frac{u}{u_{1}}\left(1 - \frac{u}{u_{1}}\right)\right] - a_{0}^{4}\frac{u}{u_{1}}\left(1 - \frac{u}{u_{1}}\right)\left[1 + \frac{u^{2}}{1+u} - \frac{u}{u_{1}}\left(1 - \frac{u}{u_{1}}\right)\right]\right\}$$

true Klein-Nishina (no mass shift)

$$\frac{dW(\omega')}{d\omega'} = \frac{e^2 m_e^2 n_e}{16\pi\varepsilon^2} a_0^2 \left\{ 2 + \frac{u^2}{1+u} - \frac{4u}{u_1} \left(1 - \frac{u}{u_1} \right) \right\}$$

where
$$u \simeq \frac{\omega'}{\varepsilon - \omega'}$$
, $u_1 \simeq 2 \frac{\varepsilon \omega_0 (1 - \cos \alpha)}{m^2}$

Nina Elkina in collaboration with Tom 1 NUMERICAL Support TO

Laser diagnostic in a linear regime

Nina Elkina in collaboration with Tom T INUMERICAL SUPPORT TO

Relative difference for Gaussina-like pulse ⁵

⁵Narozhny Fofanov, 2000

Tom 7 INUMERICAL Support TO

Summary&Conclusion

· Luxe requires to improve our numerical tools to deal with

- low statistics because
- local crossed field approximation
- predict experimental observables
- Two major sources of uncertainty
 - Initial bremstrahlung spectrum
 - laser focus parameter
- Mapping laser field strength with near-linear regime of Compton scattering

Nina Elkina in collaboration with Tom 1 NUMERICAL Support to