Reconstruction of heavy flavour jets for Higgs physics at future e^+e^- colliders DPG Spring Meeting, Aachen

Yasser Radkhorrami ^{1,2}, Jenny List ¹

¹DESY Hamburg

 $^2 {\sf Universit}$ ät Hamburg

March 27, 2019

Motivation, heavy flavours in particle physics

- We can do precision measurements at lepton colliders
 - $H \to b \bar{b}$ and $H \to c \bar{c}$ decays

Motivation, heavy flavours in particle physics

- We can do precision measurements at lepton colliders
 - $H \to b \bar{b}$ and $H \to c \bar{c}$ decays
- Improvement of heavy flavour jet reconstruction and identification

Motivation, heavy flavours in particle physics

- We can do precision measurements at lepton colliders
 - $H
 ightarrow b \bar{b}$ and $H
 ightarrow c \bar{c}$ decays
- Improvement of heavy flavour jet reconstruction and identification

International Linear Collider

and ILD Detector concepts

- ▶ Polarized e^+e^- beams colliding at $\sqrt{s} = 250 \text{GeV}$ (upgrades: 500 GeV and 1 TeV)
 - detailed knowledge of initial states
 - more clear environment compared with hadron colliders

- International Large Detector
 - designed and optimized for Particle flow

Particle Flow Algorithm (PFA) and particle composition of jets

- Particle flow approach to calorimetry
 - fine granularity detectors
 - sophisticated software algorithm (Pandora)

Particle Flow Algorithm (PFA) and particle composition of jets

- Particle flow approach to calorimetry
 - fine granularity detectors
 - sophisticated software algorithm (Pandora)

Particle composition of a jet

$$\begin{split} E_{\mathsf{REC}}^{\mathsf{charged particles}} &\approx 60\% \ E_{\mathsf{REC}}^{\mathsf{total}} \\ E_{\mathsf{REC}}^{\mathsf{neutral hadrons}} &\approx 13\% \ E_{\mathsf{REC}}^{\mathsf{total}} \\ E_{\mathsf{REC}}^{\mathsf{photons}} &\approx 26\% \ E_{\mathsf{REC}}^{\mathsf{total}} \end{split}$$

Jet Energy Study of light quarks

▶ $e^+e^- \rightarrow q\bar{q}$ events

- Fixed $\sqrt{s} = 40, 91, 200, 350, 500 \text{ GeV}$
- Standard di-jets: d, u and s quarks
- Total Energy method:

 $E_{jet} \approx \frac{E_{tot}}{2} \ \sigma_{E_{jet}} \approx \frac{\sigma_{E_{tot}}}{\sqrt{2}} \ \frac{\sigma_{E_{jet}}}{E_{jet}} \approx \sqrt{2} \frac{\sigma_{E_{tot}}}{E_{tot}}$ Number of events Number of events Number of events 500 0 600 'n 200 400 E_{REC} [GeV] Jet Energy Resolution: $\frac{\sigma_E}{E} = \frac{22.732}{407.24} \times \sqrt{2} = 6.465\%$

Jet Energy Study of light quarks

- $\blacktriangleright \ e^+e^- \to q\bar{q} \text{ events}$
 - Fixed $\sqrt{s} = 40, 91, 200, 350, 500 \text{ GeV}$
 - Standard di-jets: d, u and s quarks
 - Total Energy method:

 $E_{jet} \approx \frac{E_{tot}}{2} \quad \sigma_{E_{jet}} \approx \frac{\sigma_{E_{tot}}}{\sqrt{2}} \quad \frac{\sigma_{E_{jet}}}{E_{tot}} \approx \sqrt{2} \frac{\sigma_{E_{tot}}}{E_{tot}}$ events 2000 Jo 1500 Number of 500 0 'n 200 400 600 E_{REC} [GeV] Jet Energy Resolution: $\frac{\sigma_E}{E} = \frac{22.732}{497.24} \times \sqrt{2} = 6.465\%$

 Taking 90% of events to minimize the RMS

for $\sqrt{s} = 500 \text{ GeV}$

RMS(90%) = 11.282 (472.278 : 524.226)

MEAN(90%) = 498.375

 $\frac{\sigma_E(90\%)}{E(90\%)} = 3.2016\% \pm 0.032\%$

DESY. | Heavy flavour jets at future e^+e^- colliders | Yasser Radkhorrami, Jenny List | March 27, 2019 |

Page 5/9

Jet energy Study of b and c quarks

Jet energy resolution

Semi-leptonic decays cause different behaviour:

Jet energy Study of b and c quarks

Jet energy resolution

Jet energy distribution

Semi-leptonic decays cause different behaviour:

a lot of events with missing energy in heavy flavours

Semi-leptonic decays in heavy flavour jets

		nBSLD		
		0	1	2
nCSLD	0	34%	24%	4%
	1	18%	12%	2%
	2	3%	2%	0%

nBSLD: number of B-hadron semi-leptonic decay nCSLD: number of C-hadron semi-leptonic decay

- ► $b\bar{b}$ →4(max) semi-leptonic decay ► $BR(B \rightarrow l\nu) \approx 25\%$
- ▶ $c\bar{c}$ →2(max) semi-leptonic decay
 - $\blacktriangleright BR(C \to l\nu) \approx 21\%$
- ¹/₃ of events without semi-leptonic decay

Semi-leptonic decays degrade JER

in heavy flavour jets

- > Jet Energy Resolution is improved by excluding semi-leptonic decays
- Neutrinos from B-hadron semi-leptonic decay are more energetic

Conclusion

- ▶ study of $b\bar{b}/c\bar{c}$ jets is crucial for Higgs precision measurements
- ▶ ILD design and optimization: PFlow JER : 3-4%
- Due to neutrino from semi-leptonic decays:
 - $c\bar{c}$: 50% worse than uds
 - $b\bar{b}$: > 2x worse than light quarks
 - Better JER for events without semi-leptonic decays

BACKUP