
What is PAT and How to use it

Roger Wolf

The Event Data Model

- Major concept of CMSSW
- Fully configurable edm::Modules communicate via EventContent

- Same file structure (root) for: Gen-Sim-Digi-Reco-Analysis
- Single framework for Reconstruction (POGs) and Analysis (PAGs)

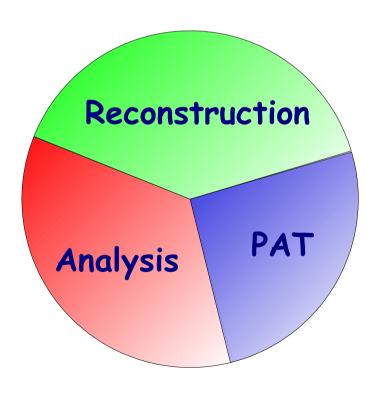
The Physics Analysis Toolkit

Interface

- b/w Reconstruction & Analysis Level
- simplifies access via DataFormats
- canalizes expertise (POG & PAG contacts)
- crossing point between POGs & PAGs ('vertical integration')

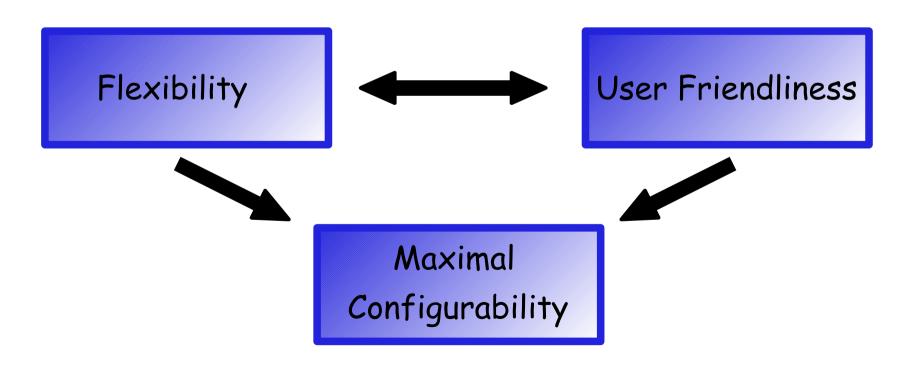
Common Tool

- approved algorithms & sensible defaults
- synergy (everybody can profit from recent developments)
- quick start into analysis for beginners


Common Format

- facilitates transfer & comparisons
- PAG common configurations
- sustained provenance

'Disclaimer'


- PAT does NOT re-invent the wheel
 - prevents re-inventions
 - helps standardize & spread finest knowledge in a collaboration of 3000 physicists
- PAT is **NOT** an antipode to CMSSW
 - fully CMSSW contained
 - prevents multiple frameworks within the framework

 Consequence & Completion of the Event Data Model

Concepts

- Make use of the modular structure of CMSSW (in full FW/FWLite)
- Provide easy access via member functions in DataFormats
- Serve 80% of all analyses in CMS

Code Location

- All code located in the CMSSW domain distributed over two systems
 - DataFormats/PatCandidates
 - Structures and Candidate Classes
 - pat::Photon,pat::Electron,pat::Muon,pat::Jet,pat::MET, ...

PatExamples • Example Analyzers built up for tutorials PatUtils • Common utilities, isolation, object disambiguation, ...

PatAlgos

- Classes for pat::Candidate creation
- Algorithms

Development

- Antagonism between code development & user's needs
- Provide stability and development (beyond releases)
 - Installation Recipes with new developments/fixes for the user

Latest tag: To check out the latest tags do the following Show ▶ Head version: To check out the head version of the B22X development branch do the following Show ▶ Important Notes: For further information about the use of PAT (version 2) have a look below: Show ▶ See the corresponding Release Notes for details.

Several layers of development for the developer

<u>Branch</u>	<u>Release</u>	<u>PATCandidtes</u>	<u>PATAIgos</u>	<u>PATUtils</u>	<u>Comments</u>
B22X_Production_vl	CMSSW_2_2_9	V03-18-ZZ	V04-14-ZZ	V03-05-02-ZZ	no development
B2_2_X	CMSSW_2_2_10	V03-YY-ZZ	V05-YY-ZZ	V03-06-ZZ	development branch
HEAD	CMSSW_3_1_X	V05-YY-ZZ	V07-YY-ZZ	V03-YY-ZZ	development branch

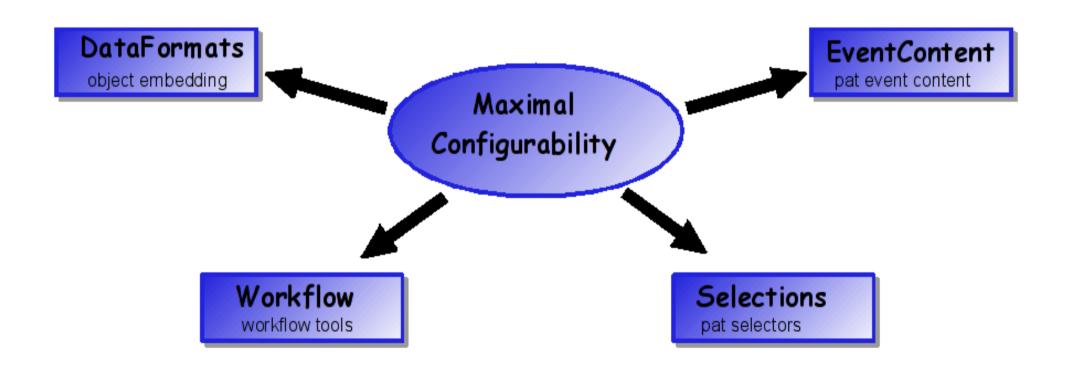
Installation Recipes

- Recommended Installation Recipes
 - Stable and tested to our best knowledge (validation in progress)
 - Regularly updated
 - Can be applied by copy & paste
 - First aim: push these tags into new releases
 - We also provide 'Release Notes'

CMSSW_2_2_X (with PAT version 2)

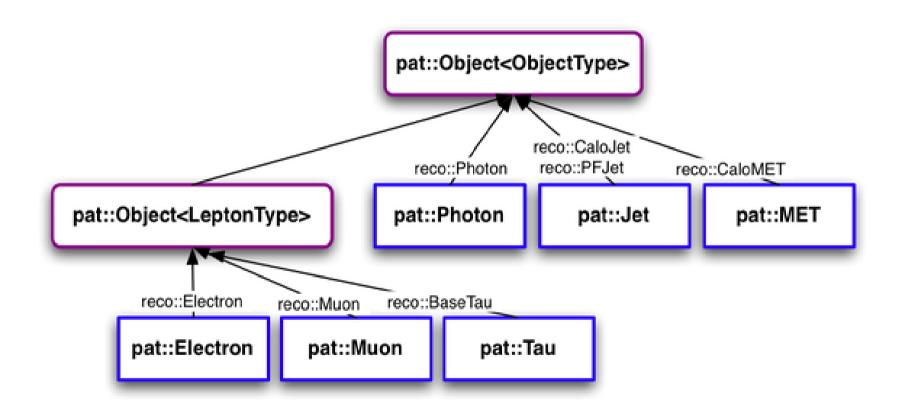
Latest tag: To check out the latest tags do the following

```
cmsrel CMSSW_2_2_13
cd CMSSW_2_2_13/src
cmsenv
addpkg DataFormats/PatCandidates V03-26-05
addpkg PhysicsTools/PatAlgos V05-05-10
addpkg PhysicsTools/PatUtils V03-06-03
```


Hide 🔻

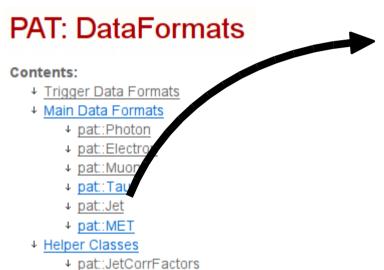
These packages have the following dependencies:

```
addpkg CondFormats/JetMETObjects V01-08-04
addpkg PhysicsTools/RecoAlgos V08-06-16-06-02
addpkg PhysicsTools/PFCandProducer V03-01-16
addpkg RecoMET/Configuration V00-04-02-17
addpkg RecoMET/METAlgorithms V02-05-00-21
addpkg RecoMET/METProducers V02-08-02-17
addpkg DataFormats/METReco V00-06-02-09
addpkg DataFormats/MuonReco V07-02-12-03
addpkg JetMETCorrections/TypelMET VB04-00-02-04
addpkg RecoJets/JetAssociationAlgorithms V01-04-03
addpkg JetMETCorrections/Algorithms V01-08-02-01
addpkg JetMETCorrections/Configuration V01-08-15
addpkg JetMETCorrections/JetPlusTrack V03-02-06
addpkg JetMETCorrections/Modules V02-09-02
```


Maximal Configurablity

- Sustain flexibility and user friendliness by maximized configurability
- This configurability is four-fold

Data Formats


DataFormats in PatCandidates

- All pat::Objects inherit from their corresponding reco::Candidates
- A pat::0bject is a reco::Object (plus more)

Data Formats

Find further documentation on SWGuidePATDataFormats

↓ pat::CandKinResolution

Access:

Hide ▼

The labels of all jet collections, which are created during the standard PAT workflow(s) are given below:

<u>Data Type</u>	<u>Module Label</u>	<u>Instance Label</u>	Process Label
patJetCollection	allLayer1Jets	None	PAT
patJetCollection	selectedLayer1Jets	None	PAT
patJetCollection	cleanedLayer1Jets	None	PAT

For a description of each listed module have a look at SWGuidePATConfiguration.

Member Functions:

You can find a list of all member functions at pat::Jet

Main Page | Modules | Namespaces | Classes | CVS Directory | Package Documentation | WorkBook | Offline Guide

Alphabetical List | Class List | Class Hierarchy | Class Members

pat∷Jet

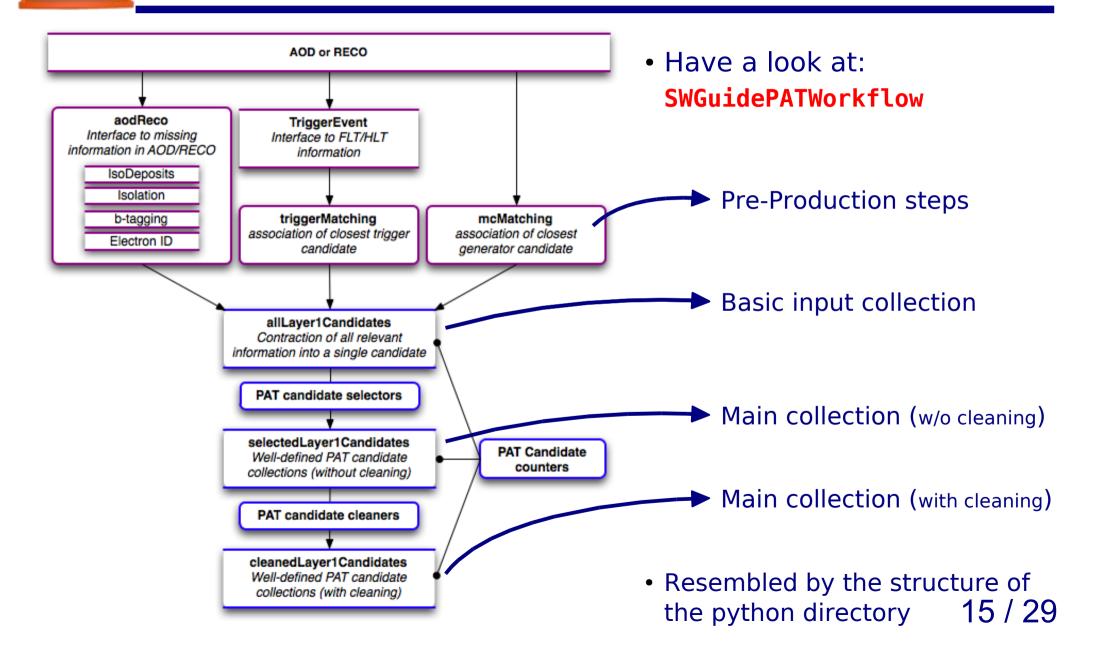
How to access pat::Objects

- For an example with an EDAnalyzer have a look at:
 SWGuidePATExamplesBasic
- Main Configuration File:

```
import FWCore.ParameterSet.Config as cms
process = cms.Process("Test")
                                                                                 Load some data file
process.source = cms.Source("PoolSource",
  fileNames = cms.untracked.vstring(
    '/store/user/rwolf/ttbar/patTuple PATv2 ttbar tauola 1.root
                                                                                  Load the most important
process.MessageLogger = cms.Service("MessageLogger")
 recess.analyzeBasicPat = cms.EDFilter("PatBasicAnalyze
                                                                                  pat::Candidate collections
             = cms.untracked.InputTag("selectedLayer1Photons
 electronSrc = cms.untracked.InputTag("selectedLayer1Electrons"
                                                                                  into the analyzer
             = cms.untracked.InputTag("selectedLayerlMuons"),
  muonSrc
             = cms.untracked.InputTag("selectedLayer1Taus"),
  tauSrc
             = cms.untracked.InputTag("selectedLayerlJets"),
  ietSrc
             = cms.untracked.InputTag("laver1METs")
  metSrc
process.TFileService = cms.Service("TFileService",
                                fileName = cms.string('analyzePatBasics.root')
process.p = cms.Path(process.analyzeBasicPat)
```

How to access pat:: Objects

• PatBasicAnalyzer Module:


```
DataFormats/PatCandidates/interface/Electron
                                                                                 Make the data formats
#include 'DataFormats/PatCandidates/interface/Photon.h"
#include 'DataFormats/PatCandidates/interface/Muon.h"
                                                                                 known to the module
#include 'DataFormats/PatCandidates/interface/Tau.h"
#include 'DataFormats/PatCandidates/interface/Jet.h"
#include paisFermats/PatCandidates/interface
PatBasicAnalyzer::PatBasicAnalyzer(const edm::ParameterSet& iConfig):
 histContainer ()
                                                                                 Read in the InputTags
  hotonSrc (iConfig.getUntrackedParameter<edm::Inputlag>(
 elecSrc (iConfig.getUntrackedParameter<edm::InputTag>("electrons
 muonSrc (iConfig.getUntrackedParameter<edm::InputTag>("muonSrc"))
 tauSrc (iConfig.getUntrackedParameter<edm::InputTag>("tauSrc
  retSrc (iConfig.getUntrackedParameter<edm::InputTag>
 metSrc (iConfig.getUntrackedParameter<edm::InputTag>("metSrc"))
                                                                                 Receive the jet collection
 // get jet collection
edm::Handle<edm::View<pat::Jet> > jets;
                                                                                 by label
iEvent.getByLabel(jetSrc ,jets);
                                                                                 Loop the jet collection
for(edm::View<pat::Jet>::const iterator jet=jets->begin(); jet!=jets->end(); ++jet){
  if(jet->pt()>50)
   ++nJets:
```

How to access pat::Objects

 For an examples with a FWLiteAnalyzer have a look at: **SWGuidePATExamplesFWLite**

```
Never forget to enable
 / load framework libraries
qSystem->Load( "libFWCoreFWLite" );
                                                                                the AutoLibraryLoader
AutoLibraryLoader::enable();
                                                                                Loop the events of an
unsigned int iEvent=0:
fwlite::Event event(inFile);
                                                                                input file
for(event.toBegin(); !event.atEnd(); ++event, ++iEvent){
  // break loop after end of file is reached
 if( iEvent==1000 ) break:
 // simple event counter
 if(iEvent>0 && iEvent%100==0){
   std::cout << " processing event: " << iEvent << std::endl;
                                                                                Receive the jet collection
  // fwlite::Handle to to muon collection
                                                                                by label
  fwlite::Handle<std::vector<pat::Muon> > muons:
  muons.getByLabel(event, "selectedLayer1Muons");
  // loop muon collection and fill histograms
  for(unsigned i=0; i<muons->size(); ++i){
   muonPt ->Fill( (*muons)[i].pt() );
   muonEta ->Fill( (*muons)[i].eta() );
   muonPhi ->Fill( (*muons)[i].phi() );
// close input file
inFile->Close():
```

Workflow

AOD/Reco Steps

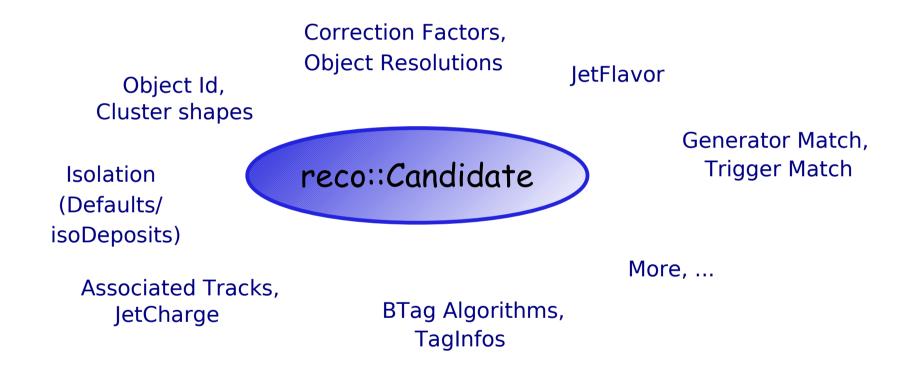
- Pre-pat::Candidate Production steps on RECO/AOD input
- It happens that 'old'-CMSSW version input files lack finest newest, objects/algorithms
 - BTag algorithms
 - Tau discriminators
 - Electron isolation from RecHits
 - Electron Id, ...

```
# Sequences needed to deliver external information for objects
# You can remove modules from here if you don't need these features
patAODExtraReco = cms.Sequence(
    #patBTagging +
                            # Empty sequences not supported yet
    patElectronId +
    patElectronIsolation +
    patJetMETCorrections +
    patJetTracksCharge +
    #patMuonIsolation +
                            # Empty sequences not supported yet
                           # Empty sequences not supported yet
    #patPhotonID +
    patPhotonIsolation +
   #patTauDiscrimination + # Empty sequences not supported yet
    patPFCandidateIsoDepositSelection +
    patPFTauIsolation
```

This sequence fills up this gap

AOD/Reco Steps

- Other pre-production Steps are missing by construction
- Re-organization of the TriggerEvent content:



- Receiving fines/best corrections for Jets & MET:
 - Fill structures, which can be folded into the pat::Candidate persistently
 - Adding of more than one set of jet corrections is possible
- Candidate Matching to Trigger/Generator Objects:
 - Search for match within radius in ΔR (closest in ΔR , OR highest in p_{T})
- NOTE: interface to POGs/PTs NO extra PAT inventions!!!

pat::Candidate Creation

• All this extra information is folded into the pat::Candidates

• Each pat::Candidate is a reco::Candidate+more

pat::Candidate Creation

- Information can be made persistent (embedded) or kept as reference
 - All persistent data is easily accessible in FWLite
 - Flexible size management of a single pat::Candidate class
 - Fully transparent for the user
- The size of the pat::Candidate depends on the choice of the user

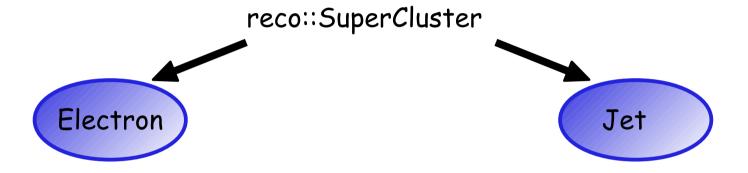
Results in allLayer1Candidates (basic candidate collection of PAT)

pat::Candidate Creation

 The current default size should pretty much look like the old PAT tuple, of the Summer08 production:

Collection	items/event	kb/event	kb/item	plot %
recoGenParticles_genParticlesHLT	766.55	16.18	0.02	29.3%
CaloTowersSorted_towerMakerRECO	440.02	13.74	0.03	24.9%
recoTracks_generalTracksRECO	105.41	10.46	0.10	19.0%
patJets_selectedLayer1JetsTEST	6.38	6.05	0.95	11.0%
patElectrons_selectedLayer1ElectronsTEST	1.26	3.09	2.45	5.6%
patPhotons_selectedLayer1PhotonsTEST	2.80	2.97	1.06	5.4%
patMuons_selectedLayer1MuonsTEST	1.41	1.60	1.13	2.9%
recoVertexs_offlinePrimaryVerticesRECO	1.07	0.70	0.66	1.3%
patMETs_selectedLayer1METsTEST	1.00	0.22	0.22	0.4%
patTaus_selectedLayer1TausTEST	0.38	0.07	0.18	0.1%
patHemispheres_selectedLayer1HemispheresTEST	2.00	0.06	0.03	0.1%
recoPdfInfo_genEventPdfInfoHLT	1.00	0.02	0.02	0.0%
recoBeamSpot_offlineBeamSpotRECO	1.00	0.01	0.01	0.0%
triggerTriggerEvent_hltTriggerSummaryA0DHLT	1.00	0.00	0.00	0.0%
int_genEventProcIDTEST	1.00	0.00	0.00	0.0%
ints_genParticlesHLT	1.00	0.00	0.00	0.0%
double_genEventScaleHLT	1.00	0.00	0.00	0.0%
edmTriggerResults_TriggerResultsHLT	1.00	0.00	0.00	0.0%
double_genEventWeightHLT	1.00	0.00	0.00	0.0%
EventMetaData + EventHistory	1.00	0.11	0.11	0.2%

 For the default configuration have a look at SWGuidePATConfiguration


selectedLayer1Candidates

Simple selection via string parser:

- Can use all kind of functions and all kind of member functions of the pat::Candidate
- For more details have a look at SWGuidePhysicsCutParser
- Results in selectedLayer1Candidates (std candidate collection of pat::Candidates w/o object cleaning)
- For the choice of standard selection strings have a look at SWGuidePATConfiguration

cleanLayer1Candidates

What is object (cross) cleaning?

- A set of PATCandidateCleaners can help to resolve this double counting if desired
- Results in cleanLayer1Candidates (std candidate collection of pat::Candidates with object cleaning)
- For the standard configuration of these cleaners have a look at SWGuidePATConfiguration

EventContent

• Compose the pat::EventContent to your will:

```
patEventContentNoLayerlCleaning = [
                                            patEventContent = [
                                                                                    patExtraAodEventContent = [
    'keep * selectedLayer1Photons * *'.
                                                'keep * cleanLayer1Photons * *',
                                                                                        # GEN
    'keep * selectedLayerlElectrons * *',
                                                'keep * cleanLayer1Electrons * *',
                                                                                        'keep recoGenParticles genParticles * *',
    'keep * selectedLayerlMuons_*_*',
                                                'keep * cleanLayerlMuons_*_*'.
                                                                                        'keep * genEventScale * *',
                                                'keep * cleanLayerlTaus * *'.
    'keep * selectedLaverlTaus * *',
                                                                                        'keep * genEventWeight * *',
    'keep * selectedLayerlJets * *',
                                                'keep * cleanLayerlJets * *',
                                                                                        'keep * genEventPdfInfo * *',
    'keep * laverlMETs * *',
                                                'keep * laverlMETs * *',
                                                                                        # RECO
    'keep * selectedLayer1PFParticles * *'
                                                'keep * cleanLayerlHemispheres * *
                                                                                        'keep recoTracks generalTracks * *',
                                                'keep * cleanLayer1PFParticles * *
                                                                                        'keep * towerMaker * *'.
                                                                                        'keep * offlineBeamSpot * *',
                                                                                        'keep * offlinePrimaryVertices * *',
                                                                                        # TRIGGER
                                                                                        'keep edmTriggerResults TriggerResults * HLT',
plus more...
                                                                                        'keep * hltTriggerSummaryAOD * *'
```

Add EventContent to the output module:

```
# Output module configuration
from PhysicsTools.PatAlgos.patEventContent_cff import patEventContent
process.out = cms.OutputModule('PoolOutputHodule',
    fileName = cms.untracked.string('PATLayerl_Output.fromAOD_full.root'),
    # save only events passing the full path
    SelectEvents = cms.untracked.PSet( SelectEvents = cms.vstring('p') ),
    # save PAT Layer 1 output
    outputCommands = cms.untracked.vstring('drop *', *patEventContent ) # you
)
process.outpath = cms.EndPath(process.out)
```


EventContent

Tools will help you estimate the size of your pat::Tuple:

patMuons_selectedLayer1Muons__TEST (1.4 items/event)

Datamember	kb/event	kb/item p	lot %	compressed
isoDeposits_	0.796	0.563	49.8%	ok
muMatches_	0.370	0.262	23.1%	ok
combinedMuon_	0.091	0.064	5.7%	ok
standAloneMuon_	0.088	0.062	5.5%	ok
isolations_	0.019	0.014	1.2%	ok
triggerMatches_	0.011	0.008	0.7%	ok
genParticleRef_	0.007	0.005	0.4%	ok
vertexfCoordinates.fZ	0.007	0.005	0.4%	ok
vertexfCoordinates.fY	0.007	0.005	0.4%	ok
phi_	0.006	0.005	0.4%	ok
eta_	0.006	0.005	0.4%	ok
vertexfCoordinates.fX	0.006	0.005	0.4%	ok

For more details have a look at **SWGuidePATEventSize**

Embedding object information will help you to drop branches

Workflow Tools

- Tools will help you to configure the pat::Workflow:
 - addJetCollections: (patLayer1_fromAOD_jetSuite_full)

• switchJetCollections: (patLayer1_fromAOD_sisCone_full)

```
switchJetCollection(process,
    cms.InputTag('sisCone5CaloJets'), # Jet collection
    doJTA=True, # Run Jet-Track  
    doBTagging=True, # Run b-tagging
    jetCorrLabel=('SC5','Calo'), # example jet co
    doTypelMET=True, # recompute Type
    genJetCollection=cms.InputTag(''sisCone5GenJets''))
```

Choose between supported jet algo's, pflow, JPT, calo, user defined

• More Tools: switch τ collections, tcMET, trigger configuration, ...

Support

For more information on support have a look at SWGuidePAT:

Support

In this section you can find the links to a all kind of support, which you might want to make use of. The **Starting Point** for any question or request might be the <u>Physics Tools HN</u>. In the first place more people than you might have the same question as you and may profit from the public answer. Moreover people might have had a similar question already before and a query of the list might already be of help.

PAT core developers:

Find a list of the most important developers below:

Show ▶

POG contacts:

Find a list of POG contact persons below:

Show IN

PAG contacts:

Find a list of PAG contact persons below:

Show IN

- Lecturers & Tutors
- Hypernews
- Community
- POG/PAG contacts
- Developers

Documentation

- **SWGuidePAT** Main documentation page
- SWGuidePATRecipes Installation recipes
- **SWGuidePATExamples** Tutorials and examples to get started
- SWGuidePATDataFormats pat::Candidate description
- SWGuidePATConfiguration Module configuration
- SWGuidePATEventSize Tools for event size estimate
- SWGuidePATWorkflow PAT workflow description
- **SWGuidePATTools** Description of workflow configuration tools
- And last but not least: This Tutorial...

Future

- End of June the switch to CMSSW_3_1_0 foreseen
 - Still one change in collection names ('layer1' is obsolete)
 - Improved configuration file structure (more flexible standard re-configuration tools/cff's)
 - Less tags (better integration into the following releases)

ConfigBrowser

- Process configuration via click and menu
- Less error prone / much improved user friendliness

Change of paradigm

- From 'experimental' and 'task force' philosophy to fully established tool with many users
- Increased and well defined connection with PTs/PAGs/POGs (service credits)
- Help in development is always welcome/needed!!!
- Internal note for common description and reference

Exercises

- (1) Go to SWGuidePAT and install newest PAT tags with CMSSW_2_2_13
- (2) Go through beginner's tutorial at WorkBookPAT
 - Run standard configuration & check event content with edmDumpEventContent
 - Switch from iterativeCone5 to sisCone5 jets
 - Add JPT jets

Lunch Break!!!

- (3) Run an EDAnalyzer on PAT/RECO, following WorkBookExamplePATBasic
- (4) Run FWLiteAnalyzer on PAT, following WorkBookPATExampleFWLite