C++ history

Born in the 1980s at AT&T Bell Labs
Originally as a pre-compiler' for C

Source file extensions: .cc, .C or .cpp

Full C grammar and C-library functions
Additional own features as a superset of C

Fast program execution is a main design goal
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Online resources

« Frank B. Brokken: C++ annotations
http://www.icce.rug.nl/documents/cplusplus/

« C++ language reference
http://cppreference.com/
http://www.cplusplus.com/

+ GNU make manual
https://www.gnu.org/software/make/manual/

« Doxygen manual
http://www.doxygen.nl/manual/
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Lab environment

Basic tools
« Text editor: kate or gedit
« C++ compiler GNU C++ (g++)

Advanced tools

« Intelligent compilation: GNU make
« Code documentation:  doxygen
« Version control system: qit
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From C to C++

// A simple C program ,ﬁﬁ\:\\_
i: ... ~?I”.0 0\ "’:'.
#include <stdio.h> Tl

int main(int argc, char **argv) {
int i;
for (i=0; i<argc; i++) {
printf("%d: %s\n", i, argv[i]);
}

return(0);
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// A simple C++ program

#include <iostream>
int main(int argc, char **argv) {
for (int 1=0; i<argc; i++) {

std: :cout N
Q

<< i sy
¥

<< 1" : " % L

<< argv[i] é}

<< std::endl; <§

}

return(0); // can be omitted
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Differences between C and C++

#include <stdio.h>

printf (

"%d:

i,
argv([i]

) 7

$s\n",

Traditional I/0O system
with format strings.
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#include <iostream>

std: :cout

i
argv[i]
std: :endl;

Completely new |/O
system with operators.
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void £(); // in C

Empty parameter list:

e parameters not
specified here

void f(void):
// means no parameters

void f£(); //

Empty parameter list:

* no parameters at all,
C++ is strongly typed

in C++

void f(void):
// not used in C++,
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typedef

Keyword typedef is still used in C++, but not
required for union, struct or enum definitions:

struct MyStruct {

int aj;
double b;

}i
The tag can be used directly as a type name:

MyStruct st;
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New features in C++
function name overloading

#include <cstdio> Q;\\\"

| | ey,
void show(int val) { ”'00
printf("Integer: %d\n", val); } T

~

void show(double val) {
printf ("Double: %1f\n", val); }

void show(char const *val) {
printf("String: %s\n", val); }

int main() {
show(l); show(2.3); show("Hi"); }

18-22 November, 2019. Desy C++ Course 9/80



default parameters

struct komplex {
double re; double im;

}i

komplex newKomplex (double r=0, double i=0) {
komplex z; z.re = r; z.im = i; return(z);

}

int main() { Q
komplex a,b,c; x/i§§/f
a=newKomplex ( y; // [0,0] ‘/”fp;/
b=newKomplex(l1 ); // [1,0 \,'Q‘b
c=newKomplex(2,3); // [2,3 $>/”

- -
L4
.
.
.
.
,
-
-~
-~
-~
-~
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null pointer

* 0 can be interpreted as an integer as well.
- nuLL In C is a macro. Avoid macros in C++!

- nuLL IS defined as O in many implementations
instead of ((void*)0)

« C++11 introduced nullptr Which is always a pointer

int *ip = nullptr; // OK
int value = nullptr; // error: not a pointer
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constant expressions

 Such functions are also called named constant
expressions with parameters. If they are called
with compile-time evaluated arguments then
the returned value Is considered a const value
aswel.

constexpr int fib(int n) { Pt
return n < 3 ? 1 : fib(n-2)+fib(n-1);
}
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references

« References can be viewed as aliases to other
already existing variables.

int i = 1;

int &iref = 1i;

iref++;

std::cout << i; // 2 will be printed

» Parameter passing by reference: Q‘,\"

void increment(int & n) { n++; } ,/igg//

int main() { ,/'<§y”
int i = 1; gl
increment (i) ;
std::cout << i; // 2 will be printed

}
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operators as functions

» C++ can overload operators as well, enabling
them to act on user defined data types. E.qg.

struct komplex { double re, im; };

komplex operator + (komplex a, komplex b) {
komplex sum;

sum.re = a.retb.re;
sum.im = a.im+b.im;
return sum;
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NAaMmespaces

 Namespaces can be used to avoid name
collisions. A namespace identifier is an
additional tag before a name.

namespace school {

struct complex { double re, im; };
} // end of namespace school
school: :complex z;

» Aliasing a namespace: Q &

namespace sc = school;

sc::fun(); // school::fun(); &&
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importing hames

* |t is possible to import names from a hamespace.
After importing, the namespace tag can be
omitted.

* Importing all names:

using namespace school; // import all names
funl(); fun2(); // both from school

» Selective import of names:

using school::funl; // import only funl
funl(); school::fun2();
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templates

» Templates are the foundation of generic
programming. A template is a blueprint or
formula for creating a generic class or a function.

template <typename T> T max(T a, T b) {
return a >= b ? a : b;

}

* The Standard Template Library plays a central
role in C++. It provides containers, generic
algorithms, iterators, function objects, allocators,
adaptors and data structures.
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exceptions

» C++ offers exceptions as the preferred way of
handling abnormal situations. Exceptions are
generated by a throw statement within a try-
block. Immediately following the try-block, one
or more catch-clauses must be defined.

try {
// do something here

if (someConditionIsTrue)
throw string("this is an exception");

}

// do something else here

}

catch (string error) { /* handle error */ }
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Scope of variables in C++

* Avariable is local to its enclosing block, and is
not accessible outside of this block. However
some can survive past the end of the block.

* Avoid using global variables!
» Keep scope of variables as limited as you can!
* Define variables when you start using them!

for (int 1=0; i<10; i++) { QQQ”
std::cout << 1 << std::endl; ¢°Q

4 ‘
" ¢
} v \ I'
4
¢ L4
4
L4 Q
L4
4
4
L4
L4
’ 4
L4
.
L4
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”«7
Memory and variables "7%&

 Memory can be modeled as a long line of 0"
uniform boxes. Each box contains 8 bits (one
byte) and has a unique serial number (an
address). Numbering is continuous.

* \We store variables in successive boxes. Each
data type requires a certain amount of bytes to
store their instances (this can be queried with
the sizeof () function).

* A pointer tells us the address of the first byte
where a variable is stored in memory. Pointers
are stored in memory as integer numbers.
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System memory is made of bytes (1 byte stores 8 bits). Each byte has a unique address.

M0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Zero is never used to address an existing memory location.
It has a special meaning: a pointer containing zero points to nowhere.
It has its own notation as well: NULL in C, nullptr in C++.

Each data type occupies some amount of bytes in memory.
This can be queried with the sizeof () function. An example can be seen below:

char 1
short 2
int 4
void* 8
double 16
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* The operating system gives our process a pool
of memory to use.

 \WWhen a new variable is created, it is given a
certain number of consecutive bytes from the

free memory pool.

» Variable name is associated with memory
address and type information (the latter
determines the number of occupied bytes).

int a; Here we defined a 32-bit
integer named “a” which was
given 4 bytes in memory

starting at address 10.

M0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
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* References are somewhere between pointers and

References

conventional variables. In some contexts they behave

like a pointer, while in others like a normal variable.

» C++ references always behave like a normal variable
with one exception: initialization. This is why another

variable of the same type must be there when defining
a reference.

ref 1

ref 2

A

object_1
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Pointers

* Variables which store memory addresses are
called pointers.

* Pointers normally carry type information: the
type of data that is stored at the memory
location pointed to by the pointer.

int *p2int; // pointer to an integer

* Void pointers: pointers without type information,
usually used for advanced purposes.

void *p; // pointer to something
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» Basic pointer operations are reference (taking
an address of a variable) and dereference
(looking up the variable at an address).

int 1i; i = 3;
int *p2i; p2i = &i; // reference
int j; 3 = *p2i; // dereference

e Pointers can be used to create variables or
sequences of variables without names.

int *i = new int; // 1 unnamed integer
int *a = new int [4]; // 4 unnamed integers

 The new operator will be explained later in this
document.
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» Dereferencing is possible with the array notation:

int *1i
i[0]=0;

new int [5];
i[l]=1; i[2]=4; i[3]=9;

Or we can use pointer arithmetic:

int *i new int [5];
*i=0; *(i+l1l)=1; *(i+2)=4;

*(1+4)=16;

*(1+3)=9;

i[4]=16;

* This is how it looks like in system memory:

i[0] (=0) i[1] (=1) ‘ J-[2] ( 4) | i[31 (=9) i[4] (=16)
12 13 14 15 16 21 22 23 24 25 26 27 28 29
t. L. L. L.
‘ i (points to the address 10)
80 | 81 | 82 | 83 84 85 | 86 | 87 88 89 90 91 92 93 94 95 96 97 98 99
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Summary of pointer operations

-
-
-
————
-
-
-

o ion: < ficSOL:
Declaralon:  ppperanmete=S

-
-
-
-
-
--
--

int a = 1; int *p2int = &a;

* Dereference operator (value stored in memory):
int a = 1; int *p2int = &a; int ¢ = *p2int;

» Dereferencing with array notation:
p2int[3] = 1; // same as *(p2int+3) = 1;

» Arithmetics (addition, subtraction):
p2int++; p2int--; p2int += 2; p2int -= 2;
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Reserving and releasing memory

C style C++ style
int *ip = int *ip =
(int)malloc(sizeof(int | new int;
fffff )) i
int *ia = int *ia =
(int)malloc( new int [100];
100*sizeof (int)
I
fffff free(ia); delete [] ia;
free(1ip); delete ip;
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Differences in memory allocation

* malloc() IS a function which merely reserves
bytes in memory.

 new and new([] are (different) operators which
have knowledge about the reserved type.

» new IS therefore type safe while malloc() is not.

» new calls constructor, delete calls destructor.
+ delete accepts a null pointer, £ree () does not.

* malloc() and free() are deprecated in C++,
must not be mixed with new and delete.
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Parameter passing

* Passing parameters to functions and returning
results from them use the same mechanisms.

* |In classic C there is one single mechanism:
passing parameters by value. A copy of the
original variable is created and this copy is
used in the function. The original variable
remains intact.

» C++ introduced parameter passing by
reference. The function uses the original
variable under a different name.
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Parameter passing by value

Let's consider the following program lines:

int func(int p) { return p*2; }
int main() { int a=1; int b; b=func(a); return 0; }

int a=1; int b; When a and b are created in main () they are placed in memory.

| | | | |
a <1> b <0>
| | | | |

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

func(a); When func () is called, parameter p is created. Value of a is copied into it.

| | | | | | | | |
a <1> b <0> p <1>

\ Bl \ \ \ \ \ \ \
0 1i12 13 14 15 16 17 18 198 20 21 22 23 24 25 26 27 28 29
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return p*2; On return from func () a temporary variable is created without a name.

| | | | | | | | | | | |
a <1> b <0> p <1> temporary <2>
\ \ \ \ \ \ \ \ \ \ \ \

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

When func () ends, parameter p is destroyed (it is a local variable). Temporary remains
alive until its value is copied into b, but after that it is destroyed as well.

| | | | | | | | |
a <1> b <2> temporary <2>

\
10 11 12 13 14 154 16 17 18 19 20 21 22 23 24 25 26 27 28 29

In the end temporary is also destroyed and only a and b remains when execution comes
to the next program line (which is return 0;).

| | | | | |
a <1> b <2>
| | | | | |

M0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
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Parameter passing by reference

~o o
I -~
-~
-~

-~
-
-
-
~ -
-~

Let's consider the following program lines: s”””l ~~~~~~~~~~~~
.......... [ "~.7

void func(int & p) { p*=2; } e’-ﬂc

int main() { int a=1; func(a); return 0; } -

int a=1; When ais created inmain () itis placed in memory.

\ \ \
a <1>
\ \ \

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

func(a); When func () is called, no new variable is created for p because it is a
reference. It is only another name for the variable that is called a inmain (). In func()
it is called p, but they can be found on the same memory location, so they are the same.
After p*=2; this memory location will contain the value 2.

p <2>
\ \ \

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

So in the end a in main () will also have the value 2.
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Namespaces

* How to prevent naming collisions of
independently developed libraries?

» Sticking labels to names makes them unique!

* We can do it with the scope resolution operator.
myVariables::a=0;

 The standard C++ namespace is called std.

* Special case: the global scope. )
::a=0; // designates global scope K/Q;\

» The using clause: use with caution!- ‘béj
Never put them in a header file! . N
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Functions inside struct

 Functions do not affect the size of a struct.

struct komplex {
double re; double im;
void show() {
std: :cout

LKL " [ n &< re <L " , n &< im LKL " ] " é’ K
<< std::endl; <§b
fc
} . 3®
}i o Q
int main() { \

komplex z; z.re=1l; z.im=2; z.show(),

}
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Constructor and destructor

 These are special member functions.

» |Instances of a data structure are created using
constructors. At the end of their lives a
destructor Is called. These calls are automatic.

* Multiple constructors are allowed, but only one
destructor.

» Constructors may use default arguments. There
are no parameters in a destructor.

» Special syntax: no return value.
 Member initializer syntax for data members.
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Automatically created methods

When we do not specify them, these methods are
automatically created by the compiler:

» default empty constructor
classname();

e Ccopy constructor
classname (const classname &);

 destructor
~classname () ;

e assignment operator
classname & operator = (const classname &);
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Default methods

According to the C++11 standard we can explicitly
request or delete default methods:

* requesting the default copy constructor:
classname(const classname &) = default;

» deleting the default empty constructor:
classname() = delete;
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Constructor example

struct komplex {
double re;
double im;
komplex (double r=0, double 1i=0)
: re(r), im(1i)

{}

}i

int main() { Q
komplex a; "s\?
komplex b = 1; R\
komplex c(2,3); c;\s

} Q§
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Operators as functions

 C++ can overload operators as well, enabling
them to act on user defined data types.

e Adding two komplex values is easy this way:
komplex a=1; komplex b=2; komplex c=a+tb;

* |[mplementation:

komplex operator + (komplex a, komplex b) {
return komplex(a.re+b.re, a.im+b.im);

}

» Best practice: define +=, -=, etc. as class
member functions, +, -, etc. as external .- G
functions. e Y

e \e\\-\““ g
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Stream insertion operator

* \We can easily print our own data types by
overloading the C++ stream insertion operator:

std::ostream & operator <<

(std::ostream & s, const komplex & z) ({
s<<"komplex["<<z.re<<","<<z.im<<"]";
return(s);

}

* The result of the operator is an ostream, so we
can use << infinitely many times in a row.
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Special operators

e Index operator: ValueT operator[] (IntegralT)
Accessing elements in a container class. Usually
comes in 2 forms returning either an Ivalue or an rvalue.

* Function call operator: ResultT operator() (...)
A class having this is called a function object (or
functor).

* Type conversion operator: operator OtherT() const

* Increment and decrement operators (++ and --):
IntegralT & operator++( ) // prefix, no argument
IntegralT operator++(int) // postfix, dummy int
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Reference parameters

» Using references we can pass modifiable
arguments to functions:

void twoTimes(int & n) {

}

int main() {
int a=4; twoTimes (a);
std::cout << a << std::endl; // 8
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* Using const reference parameters we can avoid
possibly expensive constructor calls:

komplex operator +

(const komplex & a, const komplex & b) {
return komplex(a.ret+b.re, a.imt+b.im);

}

* A function returning a reference is just the same

as passing a parameter to a function, but in the
opposite direction.

e Never use local variables

as reference return values!

\%"
,‘%
e
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Anatomy of a simple data structure

Now we have everything to assemble our komplex
data structure properly and watch it in action.
Components:

 Data fields re and im.

» Constructors and destructor with tracing.

‘o
LR
4 -
L4 -
L4 -
¢ .

. .
-~
¢

.
.
\ :

* Basic arithmetical operators. \é’
&
@
\9

« Stream insertion operator for output.
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Classes

* Technically classes are almost the same as
structs, but they provide more complex features.

e New keywords public, private, protected 10
govern visibility of data and methods.

 The this pointer is an implicit parameter of
every (non-static) method pointing to the owner

Instance.
class A {
void £(); // void f£( A *this);
void f() const; // void f(const A *this);
}i
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Enhanced komplex class

* Tolook deeper inside the anatomy of C++ we
develop our komplex struct into a class.

 Introducing serial, a static variable: it exists

iIndependently of class instances, similar to
globals. Static methods also exist.

* Private id uniquely identifies each instance.

* Implementing an aSS|gnment operator to avoid
copying of id. -

-
- -
- -
- -
- -
-
-
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Komplex class demonstrates

» Different ways of constructor calls.

* Assignment.

» Using arithmetic operators.

« Memory management with new and delete.
 Parameter passing by value and by reference.
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Another simple data structure
LIFO (or stack) — a container class

 LIFO has a container inside. We can put items
Into the container with the push () method.

* WWe can retrieve the topmost element with pop ().

e There are some more convenience methods like
empty (), full(), top(), size(), capacity().

* \We can access data inside the container only
with the public interface methods.

* To ensure consistency we must hide inner
details (private data members).
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main features of LIFO code

 The assignment operator =

 Methods designated as const. We can create

pairs of const and non-const methods:
class A {
void £(); // void f£f( A *this);
void £() const; // void f(const A *this);
}i

« Memory management with new and delete

-
-
-

-
-
-
-
-

-
-
-
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public LIFO interface

* Core functionality
void push (const char & c¢);
char pop ();

o Status check
bool empty () const;

bool full () const;

» Convenience methods
const char & top () const;

int size () const;
int capacity () const;
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private LIFO members

 Data members are private, in order to protect

consistency of LIFO state:
int stack size;

int stack capacity;
char * stack data;

e However friends can also access them:
friend std::ostream & operator <<

(std::ostream & s, const LIFO & lifo);
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LIFO enhanced

 Created some typedef definitions:

value type char

pointer char *
const pointer const char *
reference char &
const reference const char &
iterator char *
const iterator const char *
size type size t

* This makes the code more general: we can
change the stored type simply by changing
these type definitions. g

-

-
-
-
-
-
-
-
-
-
-
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Activity: DEQ
» Convert LIFO to a DEQ (double ended queue)!

» Create push back() and push front() instead
Ofpush()!

 Create pop_ back() and pop front () instead of
pop () !

« Add a non-const operator[], add non-const
begin() and end()!

 Create back() and front () In both const and
non-const versions to access elements at both

ends of the queue! |
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lterators

* In LIFO we introduced iterators for walking
through elements one-by-one.

* |terators can be considered as a generalization
of pointers. They play a central role in STL.

« Basic iterator operations:

operator
operator
operator
operator

o
*

//
//
//
//

testing equality

testing inequality
advancing to next element
accessing stored element

* Pointer arithmetic may be used for some
iterator types (but not all of them).
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lterator concepts

 |nputlterator: operator++ for traversing in one
direction, operator* Is an rvalue (reading)

e QOutputlterator: operator++ for traversing in one
direction, operator* Is an lvalue (writing)

« Forwardlterator: traversing in one direction,
dereference is read/write capable

» Bidirectionallterator: operator++/operator-- for
traversing in both directions, dereference is R/W

« RandomAccessilterator: can use arbitrary pointer
arithmetic, dereference is R/W
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Templates
» Create more general code: use templates!

* Avery simple example: max(a,b)
int max(int a, int b) { return(a>b?a:b); }

* To create a template we write patterns like this:
template<typename T> T max(T a, T b)
{ return(a>b?a:b); }

 The compiler can create the actual code from

templates using pattern matching:
int a=1; int b=2;
std: :cout << max(a,b) << std::endl; // 2
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Template classes

« Atemplate class is a bit more difficult to create,
but simple to use.

 Container classes are ideal candidates to be
Implemented as templates.

 We converted our LIFO class to a template.

e°°
\\W\%“‘“\%\
N
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Inheritance

 We can extend a class with more methods and
variables by using inheritance.

e Suppose we have a base class:
class Base { public: int a; void £(); };

 We can derive class perived from Base like this:
class Derived : public Base {
public: int b; void g(); };

« Now we can access £ () from a perived instance:
Derived derived; derived.f();

 Each perived instance contains everything defined
IN Base.
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Inheritance
the layered model

We can visualize a derived class as multiple
layers. Each layer has its own variables and

methods. A name in a higher layer obscures the
same name in a lower layer.

Derived d; d.a; d.f(); d.b; d.g();

’

Derived{é évoid f();éint b;évoid g();é}’

Base {éint a;évoid f();é é é};
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Inheritance
functions with base class parameters

* \We can call a function which has a formal
parameter of class Base with an actual

parameter of class perivead:
void func(Base b) { /*...*/ }
int main() { Derived d; func(d); }

* Think of the layered model: when we strip the
upper layer from a we still have the lower layer

with everything that Base contains.
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Polymorphism

 |[n some cases a variable can have a different
formal and actual type. This is polymorphism.

 This occurs when we have a reference or a
pointer to a base class but we store a derived
class behind it. 0

%

void func(Base & b) { /*...*/ } ¢0/’00
Derived d; func(d); ,@Q .
Base *bp = new Derived; 00

* Be very careful with polymorphic pointers! You
must use virtual destructors in your classes.
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Virtual methods

* With polymorphic variables we have two
options when invoking their methods: calling
them by the formal type or by the actual type.

 Normal methods are called by the formal type,
virtual methods are called by the actual type.

e class A { void n(); virtual void v(); };
class B : public A { void n(); void v(); };
A *X = new B;
x->n(); // call by formal type: A::n()
x->v(); // call by actual type: B::v()
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Abstract base classes

We can declare a virtual method in a class without
a definition. This makes our class abstract. This
class cannot be used to create instances. It can
only serve as a base class for derived classes.

class shape {
public: virtual double area() const = 0; };

class square : public shape {
public:
double a;
virtual double area() const {
return(a*a); }
}i g%"('
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Dynamic cast

* WWhen using polymorphic variables, we are
sometimes forced to use casting to access the
right class level.

class Base {...};
class Derived : public Base {...};

Base *bp = new Derived;
dynamic cast<Derived*>(bp)->simpleFunc();

Derived *dp = new Derived;
dynamic cast<Base*>(dp)->virtFunc(); -

\\""
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/O class hierarchy

<ios=> <istream= <iostream= <fstream: <sstream=
05 D - +| IFstream
i05_hase |SIrEEm »| Istringstream
| | [TE.
. . «| fatream
105 I0stream o| stringstream
.| Ofstrearn _
Ostream «| Dstringstrean
<ostreams cout, cerr, clog
«| filebuf
streambuf +| stringbuf
CpluE g com <streambuf=
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/O classes

i0s, istream, ostream — do the formatting
streambuf — Interface to the actual device
ifstream, ofstream — file 1/0

istringstream, ostringstream — memory |/O
special formatting with I/O manipulators
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<ios>
<streambuf>
<istream>
<ostream>
<iostream>
<fstream>
<sstream>

<iomanip>

18-22 November, 2019.

/O headers

types and facilites in the ios class

streambuf or filebuf classes

classes that do input

C

9
fi

asses that do output
obal stream objects (cin, cout, €etc.)
e stream classes

string stream classes

parameterized manipulators

Desy C++ Course 68/80



Stream states
o« Stream states are defined in ios.

» State bits and state query methods:

ios::goodbit (=0!) bool ios::good()
ios::badbit bool ios::bad ()
ios::failbit bool ios::fail()
ios::eofbit bool ios::eof ()

ios::1o0state ios::rdstate()
e Streams as bool values: !s.fail()

« State change:
void ios::clear ( )

void ios::clear (1Los::iostate state)

void ios::setstate (ios::iostate state)
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Output formatting

Member function Manipulator
ios::fill (char padding) setfill
ios::precision(int signif) setprecision
ios::width(int nchars) setw
Format flag Manipulator
ios: :dec dec
ios: :hex hex
ios::oct oct
ios::boolalpha boolalpha
noboolalpha
ios::scientific scientific

They are all defined in the sta namespace.
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/O manipulators

 Simple manipulators
ostream & SM(ostream & s);
cout << SM;

 Parametrized manipulators
class PM {

public:
PM(int n);

ostream & operator () (ostream & s);

}i
ostream& operator<<(ostream& s, PM& pm) {
return(pm(s));
g v 'R
cout << PM ( 3 ) ; e \e‘,‘“‘-—“—“_‘ _______ '
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File 1/0O

Construction

e ifstream i1f(“filename”, ios::1in);

e ofstream of(“filename”, ios::out);

o fstream f(“filename”, ios::in|ios::out);
Member functions

« f.open(“filename”, ios base::trunc);

e 1f (f.is open()) {..} else {..}

e f.close();
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File open modes

* ios::in Open for input, file must exist

 ios::out open for output, file recreated if exists

* ios::app reposition stream to its end before
every output command, file is created if doesn't
exist, existing content remains the same

 ios::ate Start initially at the end of file, contents
are kept only when another flag says so

* ios::trunc Start initially with an empty file, any
existing contents lost
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String 1/0

Construction
e istringstream is(“some string”, ios::in);
e ostringstream os(“some string”, 1os::out);

 stringstream s(“string”, ios::in|ios::out);

Member function str()
e Set string buffer: s.str(“some other string”);

« Get string buffer: string str = s.str();
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Configuration file example

« TODO
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STL containers

« TODO
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STL generic algorithms

« TODO
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Multiple source files

e Contents of header files
* Declarations
 Inline functions
 Template code

» Contents of source files
e Definitions
* Anything in headers files
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Creating makefiles

« TODO
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Using GIT
Repository: a database of development history.

git init creates a new empty repository

git add . adds all files to the repository

git commit -a -m 'comment' commit all changes
git status Status report of changes

git diff shows changes not yet staged

git log  shows development history

git whatchanged list changes from the beginning
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