C++ history

Born in the 1980s at AT&T Bell Labs
Originally as a pre-compiler' for C

Source file extensions: .cc, .C or .cpp

Full C grammar and C-library functions
Additional own features as a superset of C

Fast program execution is a main design goal

18-22 November, 2019. Desy C++ Course

1/80

Online resources

« Frank B. Brokken: C++ annotations
http://www.icce.rug.nl/documents/cplusplus/

« C++ language reference
http://cppreference.com/
http://www.cplusplus.com/

+ GNU make manual
https://www.gnu.org/software/make/manual/

« Doxygen manual
http://www.doxygen.nl/manual/

18-22 November, 2019. Desy C++ Course 2/80

http://www.icce.rug.nl/documents/cplusplus/
http://cppreference.com/
http://www.cplusplus.com/
https://www.gnu.org/software/make/manual/
http://www.doxygen.nl/manual/

Lab environment

Basic tools
« Text editor: kate or gedit
« C++ compiler GNU C++ (g++)

Advanced tools

« Intelligent compilation: GNU make
« Code documentation: doxygen
« Version control system: qit

18-22 November, 2019. Desy C++ Course

3/80

From C to C++

// A simple C program ,ﬁﬁ\:_
i: ... ~?I”.0 0\ "’:'.
#include <stdio.h> Tl

int main(int argc, char **argv) {
int i;
for (i=0; i<argc; i++) {
printf("%d: %s\n", i, argv[i]);
}

return(0);

18-22 November, 2019. Desy C++ Course 4/80

// A simple C++ program

#include <iostream>
int main(int argc, char **argv) {
for (int 1=0; i<argc; i++) {

std: :cout N
Q

<< i sy
¥

<< 1" : " % L

<< argv[i] é}

<< std::endl; <§

}

return(0); // can be omitted

18-22 November, 2019. Desy C++ Course 5/80

Differences between C and C++

#include <stdio.h>

printf (

"%d:

i,
argv([i]

) 7

$s\n",

Traditional I/0O system
with format strings.

18-22 November, 2019.

<<
<<
<<
<<

Desy C++ Course

#include <iostream>

std: :cout

i
argv[i]
std: :endl;

Completely new |/O
system with operators.

6/80

void £(); // in C

Empty parameter list:

e parameters not
specified here

void f(void):
// means no parameters

void f£(); //

Empty parameter list:

* no parameters at all,
C++ is strongly typed

in C++

void f(void):
// not used in C++,

18-22 November, 2019.

// use this instead:

Desy C++ Course

void f£():

7/80

typedef

Keyword typedef is still used in C++, but not
required for union, struct or enum definitions:

struct MyStruct {

int aj;
double b;

}i
The tag can be used directly as a type name:

MyStruct st;

18-22 November, 2019. Desy C++ Course 8/80

New features in C++
function name overloading

#include <cstdio> Q;\\\"

| | ey,
void show(int val) { ”'00
printf("Integer: %d\n", val); } T

~

void show(double val) {
printf ("Double: %1f\n", val); }

void show(char const *val) {
printf("String: %s\n", val); }

int main() {
show(l); show(2.3); show("Hi"); }

18-22 November, 2019. Desy C++ Course 9/80

default parameters

struct komplex {
double re; double im;

}i

komplex newKomplex (double r=0, double i=0) {
komplex z; z.re = r; z.im = i; return(z);

}

int main() { Q
komplex a,b,c; x/i§§/f
a=newKomplex (y; // [0,0] ‘/”fp;/
b=newKomplex(l1); // [1,0 \,'Q‘b
c=newKomplex(2,3); // [2,3 $>/”

- -
L4
.
.
.
.
,
-
-~
-~
-~
-~

18-22 November, 2019. Desy C++ Course 10/80

null pointer

* 0 can be interpreted as an integer as well.
- nuLL In C is a macro. Avoid macros in C++!

- nuLL IS defined as O in many implementations
instead of ((void*)0)

« C++11 introduced nullptr Which is always a pointer

int *ip = nullptr; // OK
int value = nullptr; // error: not a pointer

18-22 November, 2019. Desy C++ Course 11/80

constant expressions

 Such functions are also called named constant
expressions with parameters. If they are called
with compile-time evaluated arguments then
the returned value Is considered a const value
aswel.

constexpr int fib(int n) { Pt
return n < 3 ? 1 : fib(n-2)+fib(n-1);
}

18-22 November, 2019. Desy C++ Course 12/80

references

« References can be viewed as aliases to other
already existing variables.

int i = 1;

int &iref = 1i;

iref++;

std::cout << i; // 2 will be printed

» Parameter passing by reference: Q‘,\"

void increment(int & n) { n++; } ,/igg//

int main() { ,/'<§y”
int i = 1; gl
increment (i) ;
std::cout << i; // 2 will be printed

}

18-22 November, 2019. Desy C++ Course

13/80

operators as functions

» C++ can overload operators as well, enabling
them to act on user defined data types. E.qg.

struct komplex { double re, im; };

komplex operator + (komplex a, komplex b) {
komplex sum;

sum.re = a.retb.re;
sum.im = a.im+b.im;
return sum;

18-22 November, 2019. Desy C++ Course 14/80

NAaMmespaces

 Namespaces can be used to avoid name
collisions. A namespace identifier is an
additional tag before a name.

namespace school {

struct complex { double re, im; };
} // end of namespace school
school: :complex z;

» Aliasing a namespace: Q &

namespace sc = school;

sc::fun(); // school::fun(); &&

18-22 November, 2019. Desy C++ Course 15/80

importing hames

* |t is possible to import names from a hamespace.
After importing, the namespace tag can be
omitted.

* Importing all names:

using namespace school; // import all names
funl(); fun2(); // both from school

» Selective import of names:

using school::funl; // import only funl
funl(); school::fun2();

18-22 November, 2019. Desy C++ Course 16/80

templates

» Templates are the foundation of generic
programming. A template is a blueprint or
formula for creating a generic class or a function.

template <typename T> T max(T a, T b) {
return a >= b ? a : b;

}

* The Standard Template Library plays a central
role in C++. It provides containers, generic
algorithms, iterators, function objects, allocators,
adaptors and data structures.

18-22 November, 2019. Desy C++ Course 17/80

exceptions

» C++ offers exceptions as the preferred way of
handling abnormal situations. Exceptions are
generated by a throw statement within a try-
block. Immediately following the try-block, one
or more catch-clauses must be defined.

try {
// do something here

if (someConditionIsTrue)
throw string("this is an exception");

}

// do something else here

}

catch (string error) { /* handle error */ }

18-22 November, 2019. Desy C++ Course 18/80

Scope of variables in C++

* Avariable is local to its enclosing block, and is
not accessible outside of this block. However
some can survive past the end of the block.

* Avoid using global variables!
» Keep scope of variables as limited as you can!
* Define variables when you start using them!

for (int 1=0; i<10; i++) { QQQ”
std::cout << 1 << std::endl; ¢°Q

4 ‘
" ¢
} v \ I'
4
¢ L4
4
L4 Q
L4
4
4
L4
L4
’ 4
L4
.
L4

18-22 November, 2019. Desy C++ Course @ 19/80

”«7
Memory and variables "7%&

 Memory can be modeled as a long line of 0"
uniform boxes. Each box contains 8 bits (one
byte) and has a unique serial number (an
address). Numbering is continuous.

* \We store variables in successive boxes. Each
data type requires a certain amount of bytes to
store their instances (this can be queried with
the sizeof () function).

* A pointer tells us the address of the first byte
where a variable is stored in memory. Pointers
are stored in memory as integer numbers.

18-22 November, 2019. Desy C++ Course 20/80

System memory is made of bytes (1 byte stores 8 bits). Each byte has a unique address.

M0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Zero is never used to address an existing memory location.
It has a special meaning: a pointer containing zero points to nowhere.
It has its own notation as well: NULL in C, nullptr in C++.

Each data type occupies some amount of bytes in memory.
This can be queried with the sizeof () function. An example can be seen below:

char 1
short 2
int 4
void* 8
double 16

18-22 November, 2019. Desy C++ Course 21/80

* The operating system gives our process a pool
of memory to use.

 \WWhen a new variable is created, it is given a
certain number of consecutive bytes from the

free memory pool.

» Variable name is associated with memory
address and type information (the latter
determines the number of occupied bytes).

int a; Here we defined a 32-bit
integer named “a” which was
given 4 bytes in memory

starting at address 10.

M0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

18-22 November, 2019. Desy C++ Course 22/80

* References are somewhere between pointers and

References

conventional variables. In some contexts they behave

like a pointer, while in others like a normal variable.

» C++ references always behave like a normal variable
with one exception: initialization. This is why another

variable of the same type must be there when defining
a reference.

ref 1

ref 2

A

object_1

18-22 November, 2019.

ref 3 ref 4 ref 5

~.l

object 2

Desy C++ Course

23/80

Pointers

* Variables which store memory addresses are
called pointers.

* Pointers normally carry type information: the
type of data that is stored at the memory
location pointed to by the pointer.

int *p2int; // pointer to an integer

* Void pointers: pointers without type information,
usually used for advanced purposes.

void *p; // pointer to something

18-22 November, 2019. Desy C++ Course 24/80

» Basic pointer operations are reference (taking
an address of a variable) and dereference
(looking up the variable at an address).

int 1i; i = 3;
int *p2i; p2i = &i; // reference
int j; 3 = *p2i; // dereference

e Pointers can be used to create variables or
sequences of variables without names.

int *i = new int; // 1 unnamed integer
int *a = new int [4]; // 4 unnamed integers

 The new operator will be explained later in this
document.

18-22 November, 2019. Desy C++ Course 25/80

» Dereferencing is possible with the array notation:

int *1i
i[0]=0;

new int [5];
i[l]=1; i[2]=4; i[3]=9;

Or we can use pointer arithmetic:

int *i new int [5];
*i=0; *(i+l1l)=1; *(i+2)=4;

*(1+4)=16;

*(1+3)=9;

i[4]=16;

* This is how it looks like in system memory:

i[0] (=0) i[1] (=1) ‘ J-[2] (4) | i[31 (=9) i[4] (=16)
12 13 14 15 16 21 22 23 24 25 26 27 28 29
t. L. L. L.
‘ i (points to the address 10)
80 | 81 | 82 | 83 84 85 | 86 | 87 88 89 90 91 92 93 94 95 96 97 98 99
18-22 November, 2019. Desy C++ Course 26/80

Summary of pointer operations

-
-
-
————
-
-
-

o ion: < ficSOL:
Declaralon: ppperanmete=S

-
-
-
-
-
--
--

int a = 1; int *p2int = &a;

* Dereference operator (value stored in memory):
int a = 1; int *p2int = &a; int ¢ = *p2int;

» Dereferencing with array notation:
p2int[3] = 1; // same as *(p2int+3) = 1;

» Arithmetics (addition, subtraction):
p2int++; p2int--; p2int += 2; p2int -= 2;

18-22 November, 2019. Desy C++ Course 27/80

Reserving and releasing memory

C style C++ style
int *ip = int *ip =
(int)malloc(sizeof(int | new int;
fffff)) i
int *ia = int *ia =
(int)malloc(new int [100];
100*sizeof (int)
I
fffff free(ia); delete [] ia;
free(1ip); delete ip;

18-22 November, 2019. Desy C++ Course 28/80

Differences in memory allocation

* malloc() IS a function which merely reserves
bytes in memory.

 new and new([] are (different) operators which
have knowledge about the reserved type.

» new IS therefore type safe while malloc() is not.

» new calls constructor, delete calls destructor.
+ delete accepts a null pointer, £ree () does not.

* malloc() and free() are deprecated in C++,
must not be mixed with new and delete.

18-22 November, 2019. Desy C++ Course 29/80

Parameter passing

* Passing parameters to functions and returning
results from them use the same mechanisms.

* |In classic C there is one single mechanism:
passing parameters by value. A copy of the
original variable is created and this copy is
used in the function. The original variable
remains intact.

» C++ introduced parameter passing by
reference. The function uses the original
variable under a different name.

18-22 November, 2019. Desy C++ Course 30/80

Parameter passing by value

Let's consider the following program lines:

int func(int p) { return p*2; }
int main() { int a=1; int b; b=func(a); return 0; }

int a=1; int b; When a and b are created in main () they are placed in memory.

| | | | |
a <1> b <0>
| | | | |

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

func(a); When func () is called, parameter p is created. Value of a is copied into it.

| | | | | | | | |
a <1> b <0> p <1>

\ Bl \ \ \ \ \ \ \
0 1i12 13 14 15 16 17 18 198 20 21 22 23 24 25 26 27 28 29

18-22 November, 2019. Desy C++ Course 31/80

return p*2; On return from func () a temporary variable is created without a name.

| | | | | | | | | | | |
a <1> b <0> p <1> temporary <2>
\ \ \ \ \ \ \ \ \ \ \ \

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

When func () ends, parameter p is destroyed (it is a local variable). Temporary remains
alive until its value is copied into b, but after that it is destroyed as well.

| | | | | | | | |
a <1> b <2> temporary <2>

\
10 11 12 13 14 154 16 17 18 19 20 21 22 23 24 25 26 27 28 29

In the end temporary is also destroyed and only a and b remains when execution comes
to the next program line (which is return 0;).

| | | | | |
a <1> b <2>
| | | | | |

M0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

18-22 November, 2019. Desy C++ Course 32/80

Parameter passing by reference

~o o
I -~
-~
-~

-~
-
-
-
~ -
-~

Let's consider the following program lines: s”””l ~~~~~~~~~~~~
.......... ["~.7

void func(int & p) { p*=2; } e’-ﬂc

int main() { int a=1; func(a); return 0; } -

int a=1; When ais created inmain () itis placed in memory.

\ \ \
a <1>
\ \ \

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

func(a); When func () is called, no new variable is created for p because it is a
reference. It is only another name for the variable that is called a inmain (). In func()
it is called p, but they can be found on the same memory location, so they are the same.
After p*=2; this memory location will contain the value 2.

p <2>
\ \ \

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

So in the end a in main () will also have the value 2.

18-22 November, 2019. Desy C++ Course 33/80

Namespaces

* How to prevent naming collisions of
independently developed libraries?

» Sticking labels to names makes them unique!

* We can do it with the scope resolution operator.
myVariables::a=0;

 The standard C++ namespace is called std.

* Special case: the global scope.)
::a=0; // designates global scope K/Q;\

» The using clause: use with caution!- ‘béj
Never put them in a header file! . N

18-22 November, 2019. Desy C++ Course 34/80

Functions inside struct

 Functions do not affect the size of a struct.

struct komplex {
double re; double im;
void show() {
std: :cout

LKL " [n &< re <L " , n &< im LKL "] " é’ K
<< std::endl; <§b
fc
} . 3®
}i o Q
int main() { \

komplex z; z.re=1l; z.im=2; z.show(),

}

18-22 November, 2019. Desy C++ Course 35/80

Constructor and destructor

 These are special member functions.

» |Instances of a data structure are created using
constructors. At the end of their lives a
destructor Is called. These calls are automatic.

* Multiple constructors are allowed, but only one
destructor.

» Constructors may use default arguments. There
are no parameters in a destructor.

» Special syntax: no return value.
 Member initializer syntax for data members.

18-22 November, 2019. Desy C++ Course 36/80

Automatically created methods

When we do not specify them, these methods are
automatically created by the compiler:

» default empty constructor
classname();

e Ccopy constructor
classname (const classname &);

 destructor
~classname () ;

e assignment operator
classname & operator = (const classname &);

18-22 November, 2019. Desy C++ Course 37/80

Default methods

According to the C++11 standard we can explicitly
request or delete default methods:

* requesting the default copy constructor:
classname(const classname &) = default;

» deleting the default empty constructor:
classname() = delete;

18-22 November, 2019. Desy C++ Course 38/80

Constructor example

struct komplex {
double re;
double im;
komplex (double r=0, double 1i=0)
: re(r), im(1i)

{}

}i

int main() { Q
komplex a; "s\?
komplex b = 1; R\
komplex c(2,3); c;\s

} Q§

18-22 November, 2019. Desy C++ Course

39/80

Operators as functions

 C++ can overload operators as well, enabling
them to act on user defined data types.

e Adding two komplex values is easy this way:
komplex a=1; komplex b=2; komplex c=a+tb;

* |[mplementation:

komplex operator + (komplex a, komplex b) {
return komplex(a.re+b.re, a.im+b.im);

}

» Best practice: define +=, -=, etc. as class
member functions, +, -, etc. as external .- G
functions. e Y

e \e\\-\““ g

18-22 November, 2019. Desy C++ Course ““m“ ____________ 40/80

-
-
-
-
-
-
-

-

Stream insertion operator

* \We can easily print our own data types by
overloading the C++ stream insertion operator:

std::ostream & operator <<

(std::ostream & s, const komplex & z) ({
s<<"komplex["<<z.re<<","<<z.im<<"]";
return(s);

}

* The result of the operator is an ostream, so we
can use << infinitely many times in a row.

18-22 November, 2019. Desy C++ Course 41/80

Special operators

e Index operator: ValueT operator[] (IntegralT)
Accessing elements in a container class. Usually
comes in 2 forms returning either an Ivalue or an rvalue.

* Function call operator: ResultT operator() (...)
A class having this is called a function object (or
functor).

* Type conversion operator: operator OtherT() const

* Increment and decrement operators (++ and --):
IntegralT & operator++() // prefix, no argument
IntegralT operator++(int) // postfix, dummy int

18-22 November, 2019. Desy C++ Course 42/80

Reference parameters

» Using references we can pass modifiable
arguments to functions:

void twoTimes(int & n) {

}

int main() {
int a=4; twoTimes (a);
std::cout << a << std::endl; // 8

18-22 November, 2019. Desy C++ Course 43/80

* Using const reference parameters we can avoid
possibly expensive constructor calls:

komplex operator +

(const komplex & a, const komplex & b) {
return komplex(a.ret+b.re, a.imt+b.im);

}

* A function returning a reference is just the same

as passing a parameter to a function, but in the
opposite direction.

e Never use local variables

as reference return values!

\%"
,‘%
e

18-22 November, 2019, Desy C-++ Course g,\@ 44/30

Anatomy of a simple data structure

Now we have everything to assemble our komplex
data structure properly and watch it in action.
Components:

 Data fields re and im.

» Constructors and destructor with tracing.

‘o
LR
4 -
L4 -
L4 -
¢ .

. .
-~
¢

.
.
\ :

* Basic arithmetical operators. \é’
&
@
\9

« Stream insertion operator for output.

18-22 November, 2019. Desy C++ Course 45/80

Classes

* Technically classes are almost the same as
structs, but they provide more complex features.

e New keywords public, private, protected 10
govern visibility of data and methods.

 The this pointer is an implicit parameter of
every (non-static) method pointing to the owner

Instance.
class A {
void £(); // void f£(A *this);
void f() const; // void f(const A *this);
}i

18-22 November, 2019. Desy C++ Course 46/80

Enhanced komplex class

* Tolook deeper inside the anatomy of C++ we
develop our komplex struct into a class.

 Introducing serial, a static variable: it exists

iIndependently of class instances, similar to
globals. Static methods also exist.

* Private id uniquely identifies each instance.

* Implementing an aSS|gnment operator to avoid
copying of id. -

-
- -
- -
- -
- -
-
-

18-22 November, 2019. “““‘“ ————————— Desy C++ Course 47/80

-
-
-
-
-
-

Komplex class demonstrates

» Different ways of constructor calls.

* Assignment.

» Using arithmetic operators.

« Memory management with new and delete.
 Parameter passing by value and by reference.

18-22 November, 2019. Desy C++ Course 48/80

Another simple data structure
LIFO (or stack) — a container class

 LIFO has a container inside. We can put items
Into the container with the push () method.

* WWe can retrieve the topmost element with pop ().

e There are some more convenience methods like
empty (), full(), top(), size(), capacity().

* \We can access data inside the container only
with the public interface methods.

* To ensure consistency we must hide inner
details (private data members).

18-22 November, 2019. Desy C++ Course 49/80

main features of LIFO code

 The assignment operator =

 Methods designated as const. We can create

pairs of const and non-const methods:
class A {
void £(); // void f£f(A *this);
void £() const; // void f(const A *this);
}i

« Memory management with new and delete

-
-
-

-
-
-
-
-

-
-
-

18-22 November, 2019. Desy C++ Course ‘\‘ -

-
-
-
-
-

50/80

-
_ -
-
-

public LIFO interface

* Core functionality
void push (const char & c¢);
char pop ();

o Status check
bool empty () const;

bool full () const;

» Convenience methods
const char & top () const;

int size () const;
int capacity () const;

18-22 November, 2019. Desy C++ Course 51/80

private LIFO members

 Data members are private, in order to protect

consistency of LIFO state:
int stack size;

int stack capacity;
char * stack data;

e However friends can also access them:
friend std::ostream & operator <<

(std::ostream & s, const LIFO & lifo);

18-22 November, 2019. Desy C++ Course 52/80

LIFO enhanced

 Created some typedef definitions:

value type char

pointer char *
const pointer const char *
reference char &
const reference const char &
iterator char *
const iterator const char *
size type size t

* This makes the code more general: we can
change the stored type simply by changing
these type definitions. g

-

-
-
-
-
-
-
-
-
-
-

18-22 November, 2019. Desy C++ Course ‘\ -

-
-
-
-
-
-
-
-
-
-
-
-
- -

Activity: DEQ
» Convert LIFO to a DEQ (double ended queue)!

» Create push back() and push front() instead
Ofpush()!

 Create pop_ back() and pop front () instead of
pop () !

« Add a non-const operator[], add non-const
begin() and end()!

 Create back() and front () In both const and
non-const versions to access elements at both

ends of the queue! |
18-22 November, 2019. Desy C++ Course “ﬁ“.““ 54/30

-
-
-
-

-

="

lterators

* In LIFO we introduced iterators for walking
through elements one-by-one.

* |terators can be considered as a generalization
of pointers. They play a central role in STL.

« Basic iterator operations:

operator
operator
operator
operator

o
*

//
//
//
//

testing equality

testing inequality
advancing to next element
accessing stored element

* Pointer arithmetic may be used for some
iterator types (but not all of them).

18-22 November, 2019.

Desy C++ Course 55/80

lterator concepts

 |nputlterator: operator++ for traversing in one
direction, operator* Is an rvalue (reading)

e QOutputlterator: operator++ for traversing in one
direction, operator* Is an lvalue (writing)

« Forwardlterator: traversing in one direction,
dereference is read/write capable

» Bidirectionallterator: operator++/operator-- for
traversing in both directions, dereference is R/W

« RandomAccessilterator: can use arbitrary pointer
arithmetic, dereference is R/W

18-22 November, 2019. Desy C++ Course 56/80

Templates
» Create more general code: use templates!

* Avery simple example: max(a,b)
int max(int a, int b) { return(a>b?a:b); }

* To create a template we write patterns like this:
template<typename T> T max(T a, T b)
{ return(a>b?a:b); }

 The compiler can create the actual code from

templates using pattern matching:
int a=1; int b=2;
std: :cout << max(a,b) << std::endl; // 2

18-22 November, 2019. Desy C++ Course 57/80

Template classes

« Atemplate class is a bit more difficult to create,
but simple to use.

 Container classes are ideal candidates to be
Implemented as templates.

 We converted our LIFO class to a template.

e°°
\\W\%“‘“\%\
N

18-22 November, 2019. Desy C++ Course 58/80

Inheritance

 We can extend a class with more methods and
variables by using inheritance.

e Suppose we have a base class:
class Base { public: int a; void £(); };

 We can derive class perived from Base like this:
class Derived : public Base {
public: int b; void g(); };

« Now we can access £ () from a perived instance:
Derived derived; derived.f();

 Each perived instance contains everything defined
IN Base.

18-22 November, 2019. Desy C++ Course 59/80

Inheritance
the layered model

We can visualize a derived class as multiple
layers. Each layer has its own variables and

methods. A name in a higher layer obscures the
same name in a lower layer.

Derived d; d.a; d.f(); d.b; d.g();

’

Derived{é évoid f();éint b;évoid g();é}’

Base {éint a;évoid f();é é é};

18-22 November, 2019. Desy C++ Course 60/80

Inheritance
functions with base class parameters

* \We can call a function which has a formal
parameter of class Base with an actual

parameter of class perivead:
void func(Base b) { /*...*/ }
int main() { Derived d; func(d); }

* Think of the layered model: when we strip the
upper layer from a we still have the lower layer

with everything that Base contains.

18-22 November, 2019. Desy C++ Course 61/80

Polymorphism

 |[n some cases a variable can have a different
formal and actual type. This is polymorphism.

 This occurs when we have a reference or a
pointer to a base class but we store a derived
class behind it. 0

%

void func(Base & b) { /*...*/ } ¢0/’00
Derived d; func(d); ,@Q .
Base *bp = new Derived; 00

* Be very careful with polymorphic pointers! You
must use virtual destructors in your classes.

18-22 November, 2019. Desy C++ Course 62/80

Virtual methods

* With polymorphic variables we have two
options when invoking their methods: calling
them by the formal type or by the actual type.

 Normal methods are called by the formal type,
virtual methods are called by the actual type.

e class A { void n(); virtual void v(); };
class B : public A { void n(); void v(); };
A *X = new B;
x->n(); // call by formal type: A::n()
x->v(); // call by actual type: B::v()

18-22 November, 2019. Desy C++ Course 63/80

Abstract base classes

We can declare a virtual method in a class without
a definition. This makes our class abstract. This
class cannot be used to create instances. It can
only serve as a base class for derived classes.

class shape {
public: virtual double area() const = 0; };

class square : public shape {
public:
double a;
virtual double area() const {
return(a*a); }
}i g%"('

18-22 November, 2019. Desy C++ Course “% 64/80

Dynamic cast

* WWhen using polymorphic variables, we are
sometimes forced to use casting to access the
right class level.

class Base {...};
class Derived : public Base {...};

Base *bp = new Derived;
dynamic cast<Derived*>(bp)->simpleFunc();

Derived *dp = new Derived;
dynamic cast<Base*>(dp)->virtFunc(); -

\\""

65/80

18-22 November, 2019. Desy C++ Course ““%

/O class hierarchy

<ios=> <istream= <iostream= <fstream: <sstream=
05 D - +| IFstream
i05_hase |SIrEEm »| Istringstream
| | [TE.
. . «| fatream
105 I0stream o| stringstream
.| Ofstrearn _
Ostream «| Dstringstrean
<ostreams cout, cerr, clog
«| filebuf
streambuf +| stringbuf
CpluE g com <streambuf=
18-22 November, 2019. Desy C++ Course 66/80

/O classes

i0s, istream, ostream — do the formatting
streambuf — Interface to the actual device
ifstream, ofstream — file 1/0

istringstream, ostringstream — memory |/O
special formatting with I/O manipulators

18-22 November, 2019. Desy C++ Course 67/80

<ios>
<streambuf>
<istream>
<ostream>
<iostream>
<fstream>
<sstream>

<iomanip>

18-22 November, 2019.

/O headers

types and facilites in the ios class

streambuf or filebuf classes

classes that do input

C

9
fi

asses that do output
obal stream objects (cin, cout, €etc.)
e stream classes

string stream classes

parameterized manipulators

Desy C++ Course 68/80

Stream states
o« Stream states are defined in ios.

» State bits and state query methods:

ios::goodbit (=0!) bool ios::good()
ios::badbit bool ios::bad ()
ios::failbit bool ios::fail()
ios::eofbit bool ios::eof ()

ios::1o0state ios::rdstate()
e Streams as bool values: !s.fail()

« State change:
void ios::clear ()

void ios::clear (1Los::iostate state)

void ios::setstate (ios::iostate state)
18-22 November, 2019. Desy C++ Course 69/80

Output formatting

Member function Manipulator
ios::fill (char padding) setfill
ios::precision(int signif) setprecision
ios::width(int nchars) setw
Format flag Manipulator
ios: :dec dec
ios: :hex hex
ios::oct oct
ios::boolalpha boolalpha
noboolalpha
ios::scientific scientific

They are all defined in the sta namespace.

18-22 November, 2019. Desy C++ Course 70/80

/O manipulators

 Simple manipulators
ostream & SM(ostream & s);
cout << SM;

 Parametrized manipulators
class PM {

public:
PM(int n);

ostream & operator () (ostream & s);

}i
ostream& operator<<(ostream& s, PM& pm) {
return(pm(s));
g v 'R
cout << PM (3) ; e \e‘,‘“‘-—“—“_‘ _______ '
18-22 November, 2019. Desy C-++ Cours‘é“ ““\““ ____________

-
-
-
-
-

-

File 1/0O

Construction

e ifstream i1f(“filename”, ios::1in);

e ofstream of(“filename”, ios::out);

o fstream f(“filename”, ios::in|ios::out);
Member functions

« f.open(“filename”, ios base::trunc);

e 1f (f.is open()) {..} else {..}

e f.close();

18-22 November, 2019. Desy C++ Course 72/80

File open modes

* ios::in Open for input, file must exist

 ios::out open for output, file recreated if exists

* ios::app reposition stream to its end before
every output command, file is created if doesn't
exist, existing content remains the same

 ios::ate Start initially at the end of file, contents
are kept only when another flag says so

* ios::trunc Start initially with an empty file, any
existing contents lost

18-22 November, 2019. Desy C++ Course 73/80

String 1/0

Construction
e istringstream is(“some string”, ios::in);
e ostringstream os(“some string”, 1os::out);

 stringstream s(“string”, ios::in|ios::out);

Member function str()
e Set string buffer: s.str(“some other string”);

« Get string buffer: string str = s.str();

18-22 November, 2019. Desy C++ Course 74/80

Configuration file example

« TODO

18-22 November, 2019. Desy C++ Course 75/80

STL containers

« TODO

18-22 November, 2019. Desy C++ Course 76/80

STL generic algorithms

« TODO

18-22 November, 2019. Desy C++ Course 77/80

Multiple source files

e Contents of header files
* Declarations
 Inline functions
 Template code

» Contents of source files
e Definitions
* Anything in headers files

18-22 November, 2019. Desy C++ Course 78/80

Creating makefiles

« TODO

18-22 November, 2019. Desy C++ Course 79/80

Using GIT
Repository: a database of development history.

git init creates a new empty repository

git add . adds all files to the repository

git commit -a -m 'comment' commit all changes
git status Status report of changes

git diff shows changes not yet staged

git log shows development history

git whatchanged list changes from the beginning

18-22 November, 2019. Desy C++ Course 80/80

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80

